REFERENCE DESIGN PMC-1990815

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

VORTEX CHIPSET

DSLAM REFERENCE DESIGN: CORE CARD

RELEASED

Issue 4

December 2000

© 2000 PMC-Sierra, Inc. 105 - 8555 Baxter Place Burnaby, BC Canada V5A 4V7 Phone 604.415.6000 FAX 604.415.6200

This document is for the internal use of PMC-Sierra, Inc. and PMC-Sierra, Inc. customers only.

In any event, no part of this document may be reproduced in any form without the express written consent of PMC-Sierra, Inc.

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

REFERENCE DESIGN PMC-1990815

REVISION HISTORY

Issue Issue Date Details of Change No.				
2000 consistency with software driv Updated LVDS hot swap exp may be affected by setting OC S/UNI-DUPLEX. Register wr enable OCAEN at the very er sequence is already impleme		Replaced "metadriver" with "VORTEX Chipset Driver" for consistency with software driver documents. Updated LVDS hot swap explanation and cell transfer, which may be affected by setting OCAEN bit in register 0x0A of the S/UNI-DUPLEX. Register write sequence is required to enable OCAEN at the very end of the chipset activation. The sequence is already implemented with the VORTEX Chipset Driver on CD-ROM Ver 3.0.		
3				
2	December 1999	Paper design errata-document. This Reference Design Issue 2 has no Core Card PCB manufactured.		
1 August 1999 First Issue. Core Card Issue 1 build.				

© 2000 PMC-Sierra, Inc. 105 - 8555 Baxter Place Burnaby, BC Canada V5A 4V7 Phone 604.415.6000 FAX 604.415.6200

This document is for the internal use of PMC-Sierra, Inc. and PMC-Sierra, Inc. customers only.

In any event, no part of this document may be reproduced in any form without the express written consent of PMC-Sierra, Inc.

REFERENCE DESIGN PMC-1990815 PMC-Sierra, Inc.

VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

CONTENTS

1.	OVERV	/IEW	1	
2.	DSLAN	I CORE	CARD FEATURES2	
3.	TYPICA	AL DSLA	M APPLICATION WITH CORE CARD3	;
	3.1.	Compa	ct PCI (cPCI) Development Shelf4	ŀ
	3.2.	DSLAM	Reference Design Core Card Architecture4	Ļ
4.	CORE	CARD F	UNCTIONAL EXPLANATION7	,
	4.1.	Core Ca	ard Block Diagram7	,
		4.1.1.	Block Diagram Drawing	•
		4.1.2.	VORTEX Chipset	;
		4.1.3.	LVDS Interface	;
		4.1.4.	PCI Bridge9)
		4.1.5.	Hot Swap Controller9)
		4.1.6.	Ejector Handle and LED9)
		4.1.7.	CPLD9)
		4.1.8.	RAMs10)
	4.2.	DSLAM	I High-Speed LVDS Serial Interface11	
		4.2.1.	Example of LVDS Routing on Core Card 11	
		4.2.2.	LVDS Transmitters vs. Hot Swap	
	4.3.	8kHz In	terface12)
5.	CORE	CARD C	HIPSET OVERVIEW15	,
	5.1.	PM7324	4 S/UNI-ATLAS	;
		5.1.1.	Ingress SRAM16	;
		5.1.2.	Egress RAM	;
	5.2.	S/UNI-A	APEX)
		5.2.1.	Functional Description)
		5.2.2.	Context Memory SSRAM Interface23	;
		5.2.3.	Cell Buffer SDRAM Interface24	Ļ
	5.3.	S/UNI-\	/ORTEX	;
	5.4.	S/UNI-E	DUPLEX	;
	5.5.	CPCI B	ridge29)

REFERENCE DESIGN PMC-1990815

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

		5.5.1. PCI9054 PCI Bridge
		5.5.2. SEEP Basics
6.	SIGN	AL FLOW ON THE CORE CARD IN BRIEF
	6.1.	Upstream Direction
	6.2.	Downstream Direction
7.	HOT S	SWAP
	7.1.	cPCI and Power Rail Hot Swap32
	7.2.	LVDS Hot Swap34
	7.3.	Blue LED and Microswitch Control35
8.	CPCI	INTERFACE, PCI BRIDGE AND CPLD
	8.1.	Control Interface Block Diagram
	8.2.	PCI Bridge – CPLD Interface
	8.3.	Major Control Lines Between S/UNI-APEX, CPLD and PCI9054 Interface 38
	8.4.	Address Mapping40
	8.5.	PLX PCI9054 Address Spaces41
	8.6.	Card ID Number
	8.7.	Serial EEPROM Load Registers41
	8.8.	CPLD
		8.8.1. Local Bus Memory Map45
		8.8.2. CPLD Registers
		8.8.3. Alarms And Interrupts
		8.8.4. 8 kHz Channel
		8.8.5. Address Decoding and Chip Enable
		8.8.6. CPLD Type
	8.9.	CPLD Block Diagram
9.	CONN	ECTORS ON CORE CARD
	9.1.	CPCI Connectors
		9.1.1. J1 on Core Card51
		9.1.2. J2, J3, and J4 on Core Card51
		9.1.3. J5 on Core Card
	9.2.	LVDS Interface on the LVDS-backlane51
	9.3.	LVDS Interface on the Front Panel52

REFERENCE DESIGN PMC-1990815

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

	9.4.	CPLD Programming Interface on J34	52
	9.5.	25 MHz Output on J45	52
	9.6.	RESET Header J64	52
	9.7.	8 kHz Interface on J65 and J72	52
	9.8.	JTAG Interface on J66	53
	9.9.	Mictor Connectors J70 and J71	53
	9.10.	Clock Control Header J73	53
	9.11.	Optional Reset to CPLD Header J74	53
	9.12.	Ejector Handle Switch Header TP115	54
	9.13.	Miscellaneous Test Points	54
10.	LVDS	INTERFACE	55
	10.1.	LVDS Front Panel Interface	55
	10.2.	LVDS Eye Pattern at Jumper Field Tests	57
	10.3.	LVDS Eye Pattern over LVDS-Backplane Tests	58
11.	BUS T	ERMINATION EXAMPLES	61
	11.1.	Microprocessor Bus Termination	61
	11.2.	Downstream Any-PHY Bus Termination	63
	11.3.	Upstream/Downstream UL2 Bus Termination	64
	11.4.	S/UNI-APEX – S/UNI-ATLAS Bus Termination	66
	11.5.	RAM Bus Termination	67
12.	HARD	WARE	74
	12.1.	Card Form	74
	12.2.	Front Plate on Core Card	74
	12.3.	LEDs On the Front Plate	75
	12.4.	Printed Circuit Board Stack	77
	12.5.	Key Coding on the J1 Connector	78
	12.6.	Power Supply Specification	78
		12.6.1. Core Card	78
		12.6.2. S/UNI-DUPLEX and S/UNI-VORTEX	79
13.	SOFT	WARE	80
	13.1.	System Processor Requirement	80
	13.2.	DSLAM Operating System	80

ISSUE 4

VORTEX CHIPSET

REFERENCE DESIGN PMC-1990815

DSLAM REFERENCE DESIGN: CORE CARD

	13.3.	Device Drivers	
	13.4.	Example of VORTEX Chipset Setup	
		13.4.1. APEX Setup	
		13.4.2. APEX Operations	81
		13.4.3. DUPLEX and VORTEX Setup	81
		13.4.4. DUPLEX And VORTEX Operation	81
		13.4.5. ATLAS Setup	81
		13.4.6. ATLAS Operations	
		13.4.7. Important Notes For Chipset Level Setup	82
	13.5.	Firmware	82
	13.6.	Programmable Logic Devices	
	13.7.	System Control	
14.	APPE	NDIX A: TESTS EXAMPLE UTILIZING CORE CARD DRIVER	
	14.1.	Register and RAM Test with VORTEX Chipset Driver	
	14.2.	Cell Data Path with Internal Loopback Test	
	14.3.	External Loopback Test	
		14.3.1. Sub Test 1: Downstream/Upstream on Sixteen Channels	87
15.	APPE	NDIX B: VOLTAGE DISCHARGE ON TRI-STATED BUS	92
16.	APPE	NDIX C: EXAMPLE OF SEEP READING ON RESET	95
17.	APPE	NDIX D: LOCAL BUS TIMING EXAMPLES	96
		17.1.1. Timing Example for Read from S/UNI-APEX	
		17.1.2. Timing Example for Write to S/UNI-APEX	97
		17.1.3. Timing Example for Read from S/UNI-DUPLEX	
		17.1.4. Timing Example for Write to S/UNI-DUPLEX	
18.	APPE	NDIX E: VHDL FOR CPLD	
19.	APPE	NDIX F: BILL OF MATERIAL	
20.	APPE	NDIX G: SCHEMATIC DIAGRAMS	113
21.	APPE	NDIX H: LAYOUT	115
	21.1.	Drawing Summary Report	115
	21.2.	X-Y Coordinates for Issue 3 Board	116
22.	APPE	NDIX I: GLOSSARY	126

PMC-Sierra, Inc.

VORTEX CHIPSET

REFERENCE DESIGN PMC-1990815

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

LIST OF FIGURES

FIGURE 1.	DSLAM Reference Design Shelf Architecture	3
FIGURE 2.	The Core Card Architecture	4
FIGURE 3.	The Core Card Top View	6
FIGURE 4.	Core Card Block Diagram	7
FIGURE 5.	LVDS on Core Card	11
FIGURE 6.	Example of 8kHz Clock Flow on Core Card	13
FIGURE 7.	Example of Received 8 kHz Time Reference	14
FIGURE 8.	S/UNI-ATLAS SRAM VC Table Addressing	16
FIGURE 9.	VC Ingress S/UNI-ATLAS-SSRAM Connection	17
FIGURE 10.	VC Egress S/UNI-ATLAS-SSRAM Connection	18
FIGURE 11.	Dual Bank Configuration for ZBT SSRAM	24
FIGURE 12.	Single Bank SDRAM 4 MB for 64 k Cells	25
FIGURE 13.	Example of a Hot-Swap Circuit	32
FIGURE 14.	LED_SWITCH\I Line SiganI	35
FIGURE 15.	cPCI and Local Bus Microprocessor Interface	36
FIGURE 16.	S/UNI-APEX, CPLD, and the Local Bus Microprocessor Interface	39
FIGURE 17.	CPLD Block Diagram	50
FIGURE 18.	8 kHz Interface	53
FIGURE 19.	LVDS Pinout on DSLAM Cards	55
FIGURE 20.	LVDS Header Straps	56
FIGURE 21.	Wave Shapes with a Single Active LVDS Transmitter	57
FIGURE 22.	LVDS Over Backplane Test Connections	59
FIGURE 23.	LVDS at Core Card and Line Card with LVDS backplane	59
FIGURE 24.	Microprocessor Bus Termiantion	61
FIGURE 25.	Examples of Signal Integrity on uP Bus	62
FIGURE 26.	Any-PHY Bus Termiantion	63
FIGURE 27.	Example of Signal Integrity Downstream at VORTEX-1	64
FIGURE 28.	Upstream/Downstream UL2 Bus Termination	65
FIGURE 29.	Example of Signal Integrity Upstream at VORTEX-1	66
FIGURE 30.	S/UNI-APEX – S/UNI-ATLAS Bus Termiantion	67

PMC-1990815

REFERENCE DESIGN

DSLAM REFERENCE DESIGN: CORE CARD

FIGURE 31.	RAM Bus Termiantion68
FIGURE 32.	Waveforms at S/UNI-APEX at 80 MHz69
FIGURE 33.	Waveforms at SDRAM at 80 MHz70
FIGURE 34.	Waveforms at SDRAM at 80 MHz71
FIGURE 35.	Waveforms at S/UNI-APEX at 80 MHz72
FIGURE 36.	Waveforms at SSRAM at 50 MHz73
FIGURE 37.	Front Plate for Core Card74
FIGURE 38.	Example of LEDs Placement76
FIGURE 39.	PCB Cross-section
FIGURE 40.	Data Path with Internal Loopback
FIGURE 41.	External Loopback with ATM over DS-3 Tester87
FIGURE 42.	Voltage Discharge on Hi-Z Bus Line92
FIGURE 43.	Voltage Discharge on Hi-Z Bus Line with Noise93
FIGURE 44.	Example of SEEP Reading Upon PCI Reset95
FIGURE 45.	Example of SEEP Reading Upon PCI Reset95
FIGURE 46.	Example Read from the S/UNI-APEX at 25 MHz96
FIGURE 47.	Example Write to APEX Cycle on Local Bus at 25 MHz97
FIGURE 48.	Example Read from the S/UNI-DUPLEX
FIGURE 49.	Example Write to the S/UNI-DUPLEX

ISSUE 4

REFERENCE DESIGN PMC-1990815 PMC-Sierra, Inc.

VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

REFERENCES

PMC-Sierra, Inc. DSLAM Hardware

- 1. PMC-Sierra Inc., PMC-1990832, "DSLAM Reference Design: System Design", Issue 3, September 2000
- 2. PMC-Sierra Inc., PMC-1990354, "DSLAM Reference Design: Line Card", Issue 3, September 2000
- 3. PMC-Sierra Inc., PMC-1990474, "DSLAM Reference Design: WAN Card", Issue 3, September 2000
- 4. PMC-Sierra, Inc., PMC-971154, "Saturn User Network Interface ATM Layer Solution Data Sheet" (S/UNI-ATLAS, PM7324), Issue 7, January 2000.
- 5. PMC-Sierra Inc., PMC-1990816, "DSLAM Apps Note: Signal Integrity and Timing Simulation for the VORTEX Chipset", Issue 1, September 2000
- 6. PMC-Sierra Inc., PMC-1981025, "S/UNI-VORTEX and S/UNI-DUPLEX Technical Overview", Issue 2, June 1999
- 7. PMC-Sierra, Inc., PMC-981224, "ATM/Packet Traffic Manager and Switch Data Sheet" (S/UNI-APEX, PM7326), Issue 6, April 2000.

PMC-Sierra, Inc. DSLAM Software

- 8. PMC-Sierra Inc., PMC-1980585, S/UNI -ATLAS Programmer's Guide and Example Software, Issue 2, Feb. 1999
- PMC-Sierra Inc., PMC-1991727, S/UNI-APEX Device Driver Design, Issue 2, May 2000
- 10. PMC-Sierra Inc., PMC-1990786, S/UNI-VORTEX Driver Manual, Issue 1, Aug. 1999
- 11. PMC-Sierra Inc., PMC-1990799, S/UNI-DUPLEX Driver Manual, Issue 1, Aug. 1999
- 12. PMC-Sierra Inc., PMC-1991454, S/UNI-APEX H/W Programmer's Guide, Issue 2, April 2000
- **13.** PMC-Sierra Inc., PMC-1991578, S/UNI-APEX Device Driver Release Notes, Issue 2, June 2000
- 14. PMC-Sierra Inc., PMC-2000781, VORTEX Chipset Driver Release Notes, Issue 1, August 2000.

PMC-Sierra, Inc.

VORTEX CHIPSET

ISSUE 4

Industry Standards

- **15.** Bell Communications Research, "SONET Transport Systems: Common Generic Criteria," GR-253-CORE, Issue 2, December 1995.
- **16.** Bell Communications Research, "Clocks for the Synchronized Network: Common Generic Criteria" GR-1244-CORE, Issue 1, June 1995.
- **17.** ITU-T, "The control of jitter and wander within digital networks which are based on the synchronous digital hierarchy (SDH)", March 1993.
- **18.** PCI Industrial Computers manufacturers Group (PICMG), "CompactPCI Specification", PICMG 2.0 R2.1, September 2, 1997.
- **19.** PCI Industrial Computers manufacturers Group (PICMG), "Hot Swap Specification", PICMG 2.1 R1.0, May 14, 1998. (Draft not approved)
- 20. ADSL Forum, Web Page, http://www.adsl.com
- 21. Montrose, Mark I., "Printed Circuit Board Design Techniques for EMC Compliance", IEEE Press, 1996.

x

PMC-Sierra, Inc.

VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

1. OVERVIEW

The purpose of the Reference Design document set is to assist engineers in designing their products using the PMC-Sierra VORTEX chipset.

The DSLAM Reference Design is composed of these four main documents:

- DSLAM Reference Design: System Design
- DSLAM Reference Design: Core Card
- DSLAM Reference Design: WAN Card
- DSLAM Reference Design: Line Card

The DSLAM Reference Design: System Design document provides an overview of the DSLAM Reference Design system architecture. The remaining documents describe the functionality and implementation specific details for each individual card.

This document specifically describes the design for the DSLAM Core Card. A block diagram illustrates the Core Card design. A description is then given for the functional blocks of the design. A detailed implementation description then follows. The appendixes contains additional information, such as, schematics, bill of material, and CPLD VHDL source.

REFERENCE DESIGN PMC-1990815

DSLAM REFERENCE DESIGN: CORE CARD

2. DSLAM CORE CARD FEATURES

The Digital Subscriber Line Access Multiplexer (DSLAM) Core Card features:

• ATM traffic policing and traffic shaping

ISSUE 4

- Small-scale traffic management (switching) with the S/UNI-APEX
- A high-speed Low Voltage Differential Signal (LVDS) interface that:
 - Provides data rates up to 200Mb/s
 - Allows manual selection of transmission over a backplane or through cables.
 - Supports one-to-one (1:1) protection switching
- Support for clock synchronization to either the DS-3 network or the line side interface
- Front panel LEDs to indicate:
 - Power supply status
 - LVDS signal status
- On-board hot swap controller to monitor the current flow onto the board for live insertion and extraction
- Compact PCI (cPCI) compatibility

DSLAM REFERENCE DESIGN: CORE CARD

3. TYPICAL DSLAM APPLICATION WITH CORE CARD

ISSUE 4

Figure 1 shows a typical application for the S/UNI-DUPLEX, S/UNI-VORTEX, S/UNI-APEX, and the S/UNI-ATLAS.

Figure 1. DSLAM Reference Design Shelf Architecture

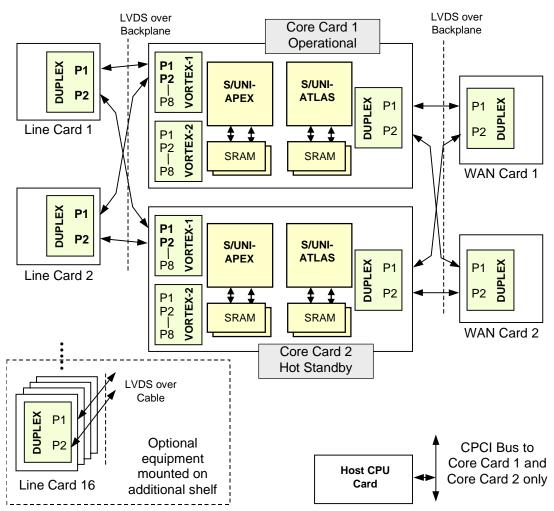


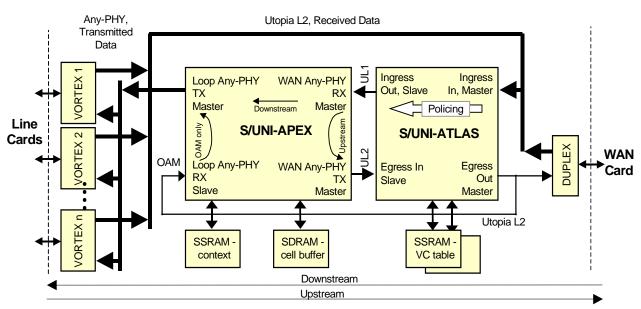
Figure 1 shows two Core Cards in protective mode. The lower card is the hot stand-bycard that allows one-to-one backup for the operating Core Card.

Also, this block diagram shows a DSLAM development shelf that is equipped with a custom LVDS-backplane, two Line Cards, two WAN Cards, and two Core Cards. A single host CPU card controls Core Cards only. Additional Line Cards can be mounted on a separate shelf with LVDS over cables. Line Cards and WAN Cards, built for the DSLAM Reference Design, have an embedded microprocessor without communication to the cPCI bus.

VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD


3.1. Compact PCI (cPCI) Development Shelf

The DSLAM Reference Design for the Core Card is based on a cPCI shelf allowing standardization of interfaces and physical card forms. A custom-made LVDS-backplane is developed demonstrating the LVDS interface functioning over the backplane. LVDS can also be connected with cables through the front plate connectors. The shelf-to-shelf LVDS is implemented using the front plate connectors exclusively. Two Core Cards are used to provide a hot stand-by, as required by the Telcos.

The basic DSLAM development shelf is an 8-slot entity. A 16-slot shelf can be also supported with a single Reference Design Core Card (with an optional hot stand-by card for protection switching).

3.2. DSLAM Reference Design Core Card Architecture

Figure 2 shows the DSLAM Reference Design and Core Card Reference Design that is built around a single S/UNI-ATLAS architecture.

Figure 2. The Core Card Architecture

The S/UNI-APEX and S/UNI-ATLAS are the core of the design. The downstream and upstream cells are interfaced to the S/UNI-ATLAS through the same *Ingress In, Master*port. The *Loop Any-PHY RX, Slave* port on the S/UNI-APEX is connected to WAN direction *Egress Out, Master* allowing OAM cell flow (RDI from the S/UNI-ATLAS towards downstream). The S/UNI-APEX switches cells to *Loop Any-PHY TX, Master* or to *WAN Any-PHY TX, Master* ports as required per

VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

cell destination. The Core Card interface to the Line Cards is through a set of S/UNI-VORTEX devices. The Core Card interface to the network is through the S/UNI-DUPLEX, which provides an LVDS link to the WAN Card.

In the upstream direction, the S/UNI-ATLAS takes cells from the Line Cards and performs a look-up, based on the PHY number, VPI, and VCI that are used to identify the associated connection. Once the connection is identified, the cell is processed according to the configuration of the connection. In this application, the S/UNI-ATLAS performs the header translation, <u>per-PHY and per-VC</u> policing, performance monitoring, and fault management. Prepend and postpend are used to navigate the cell.

In the downstream direction, the S/UNI-ATLAS accepts the cells coming from a WAN Card and a direct look-up is performed to identify the connection. The cell is then processed according to the configuration in the context table for that connection (cell is tagged). The header translation and OAM processing can be done at the ingress. The tagged cell is sent to the S/UNI-APEX *WAN Any-PHY RX, Master* port. The S/UNI-APEX puts the cell into a queue and sends it to either *Loop Any-PHY TX, Master* or *WAN Any-PHY TX, Master* ports. The tag determines the port. If the cell destination is loop side, then the cell goes through the *Loop Any-PHY TX, Master* port to one of the S/UNI-VORTEX multiplexers, where the destination channel matches the tag number. The cell is passed to one of 32 queues for transmission by the appropriate PHY.

The AIS cell coming from the loop (upstream) arrives at the S/UNI-ATLAS *Ingress In* port. The S/UNI-ATLAS generates the RDI cell with the tag that corresponds to the port where the AIS cell arrived. The RDI cell is sent to the *Egress Out* port and then arrives at the S/UNI-APEX slave port, *Loop Any_PHY RX*, only if the tag matches the loop side destination. The S/UNI-APEX puts the RDI cell into a queue and sends the cell through the *Loop Any-PHY TX, Master* port to one of the S/UNI-VORTEX multiplexers, where the destination channel matches the tag number.

The network management entity has to assign unique port (channel) numbers to all S/UNI-DUPLEX and S/UNI-VORTEX devices attached to the Utopia L2 bus.

The Core Card picture is shown in Figure 3 below.

REFERENCE DESIGN PMC-1990815

VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

Figure 3. Core Card Top View

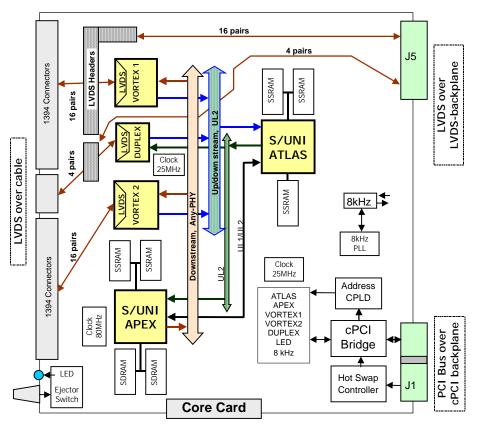
REFERENCE DESIGN PMC-1990815

VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

4. CORE CARD FUNCTIONAL EXPLANATION


4.1. Core Card Block Diagram

This section briefly describes the Core Card block diagram.

4.1.1. Block Diagram Drawing

Figure 4 shows the Core Card layout block diagram.

The block diagram shows the PMC Sierra chipset associating with RAMs, clocks, PCI bridge, and CPLD. LVDS connectors at the front and at the back of the Core Card allow an interface to the high-speed LVDS signals (up to 200 Mbps). The PCI bus and power (+5 V and +3.3 V) are connected through J1. A system synchronization 8 kHz clock (stratum clock) can be interfaced at the internal headers.

PMC-1990815

ISSUE 4

VORTEX CHIPSET

REFERENCE DESIGN

DSLAM REFERENCE DESIGN: CORE CARD

4.1.2. VORTEX Chipset

Five chips shown in the block diagram above create a single entity called VORTEX chipset, including the S/UNI-ATLAS, S/UNI-APEX, S/UNI-DUPLEX, and S/UNI-VORTEX. The VORTEX chipset, and Core Card as well, provides ATM traffic policing (S/UNI-ATLAS), ATM cell traffic management (S/UNI-APEX), and ATM cell multiplexing (S/UNI-VORTEX and S/UNI-DUPLEX).

In the downstream direction, the S/UNI-APEX sends data to the S/UNI-VORTEX and then to the Line Card(s) through the PMC-Sierra Any-PHY interface. The Any-PHY interface supports a bandwidth of up to 800 Mb/s and allows for 2048 channel addressing. The data format is an ATM cell with a prepended single address word.

On the user (loop) side, the Core Card provides an interface through the S/UNI-VORTEX-1 or S/UNI-VORTEX-2 to the Line Cards. On the network side, the Core Card provides an interface through a S/UNI-DUPLEX to the WAN Card. Both interfaces are LVDS type with data transfer rates up to 200 Mb/s.

The S/UNI-ATLAS provides traffic policing and OAM functionality. A single entry port to the S/UNI-ATLAS of both upstream and downstream cells (specific to this Reference Design) provides easy traffic policing - the S/UNI-ATLAS implements that function in the Ingress direction only.

The VORTEX chipset is described in more details later in this document.

4.1.3. LVDS Interface

The Core Card provides an interface for the LVDS from the front plate or from the LVDS-backplane. The LVDS interface at the front panel allows access to eight ports on the S/UNI-VORTEX-1, eight ports on the S/UNI-VORTEX-2, and two ports on the S/UNI-DUPLEX. LVDS over the backplane provides an interface to eight ports on the S/UNI-VORTEX-1 and two ports on the S/UNI-DUPLEX. Space limitations prevent all LVDS ports of the S/UNI-VORTEX-2 from being accessible at the back connector J5. The LVDS connectors were chosen to be an IEEE Firewire type that supports a data rate in excess of 200 Mb/s.

The LVDS drivers, receivers, copper traces, and connectors are designed to work in 50/100 ohm environment. Individual trace and driver is designed for 50 ohm characteristic impedance. The differential LVDS lines at the receiver inputs are loaded with external 100 ohm resistors.

More on LVDS can be found in sections 4.2, 9.2, 9.3 and 10 in this document.

VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

4.1.4. PCI Bridge

The Core Card does not have an on-board microprocessor. The PCI bus host processor card provides an interface to the Core Card through a cPCI bridge device, which only uses a read/write (burst) register sequence and interrupt service. The cPCI bus does not carry payload data, which enables the host CPU to maintain all DSLAM cards through the cPCI bus without burden of ATM traffic over cPCI. If required, cells can be inserted into traffic through the cPCI interface.

The hot swap compatible PCI bridge (PLX PCI9054) is used as the PCI bus interface. The bridge operates in multiplexed mode on the local bus side. The PCI9054 provides an interface to a CPLD for address decoding (chip enable).

The local bus speed is set at 25 MHz, which allows the microprocessor interface on all devices to run at the optimum speed.

The PCI9054 requires a serial EEPROM (SEEP) to boot on power-up (or reset).

4.1.5. Hot Swap Controller

The hot swap controller LTC1645, and discrete components are used to make the Core Card hot swap compatible. This device is accompanied with the LTC1326 supply voltage monitor and reset line generator.

4.1.6. Ejector Handle and LED

The ejector handle has a built-in microswitch that toggles when the ejector changes position. The activity is detected by the cPCI bridge, which in turn notifies the host CPU about the status change. A blue LED signals the card's "not-ready-yet" status upon insertion or the card's readiness for removal. NOTE: This functionality requires specific software driver, which is not supported by the PMC-Sierra VORTEX Chipset Driver. Also, the host CPU card must have hardware provision to detect activities on the ENUM# line.

4.1.7. CPLD

A CMOS Programmable Logic Device (CPLD) is used to provide address decoding, LED latches, interrupt latches, and 8 kHz clock routing. The Xilinx XC95144 was chosen for this design.

The CPLD is in-circuit programmable through a header connector.

PMC-Sierra, Inc.

ISSUE 4

VORTEX CHIPSET

DSLAM REFERENCE DESIGN: CORE CARD

4.1.8. RAMs

The S/UNI-ATLAS and the S/UNI-APEX need fast RAMs to buffer large amounts of data.

The S/UNI-APEX needs both SDRAM and SSRAM. Both RAMs operate at 80 MHz. The Reference Design shows oversized RAMs due to chip availability and system verification purposes. The Core Card cell throughput can be supported with smaller RAM sizes. The cell buffer SDRAMs are at 16 MBytes in two integrated circuits. The context memory NBT (ZBT) SSRAM is shown as 4 MBytes that use two integrated circuits. Also, RAM size depends on availability of RAM chips at the time the Core Cards are assembled.

The S/UNI-ATLAS needs two sets of RAM for VC* look-up tables on Ingress and Egress directions. Those RAMs are SSRAMs working at 50 MHz. The Reference Design for S/UNI-ATLAS is supported with enough SRAM for 16 k connections at the Ingress and Egress. The Egress uses one 128 k x 36 SRAM (36-bit wide data bus). The Ingress uses one bank of two 128 k x 36 SRAMs to make up the 72 bit wide data bus. The S/UNI-ATLAS must interface with synchronous flow-through SRAMs (non-pipelined).

*/ VC – Virtual Connection. This refers either to Virtual Path Connection (VPC) or Virtual Channel Connection (VCC) within a physical link.

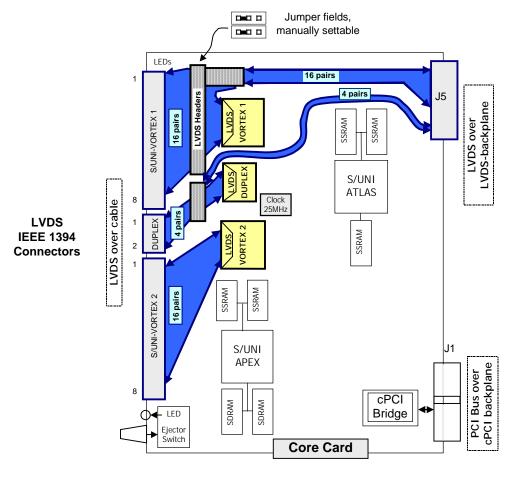
PMC-1990815

REFERENCE DESIGN

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

4.2. DSLAM High-Speed LVDS Serial Interface


The S/UNI-DUPLEX and S/UNI-VORTEX provide backplane interconnection through 100 to 200 Mb/s serial LVDS links. All cells flown to and from Core Card, and cells processed on the Core Card are concentrated on these high-speed links. Clock is not transmitted to avoid clock skew issues, and the receiver recovers the clock from the incoming data.

For more information on the high-speed LVDS link, see DSLAM system design document [1].

4.2.1. Example of LVDS Routing on Core Card

The Core Card provides an LVDS interface to both the LVDS-backplane and to the front panel. Block diagram, shown in Figure 5, highlights components that support LVDS on the Core Card.

Figure 5. LVDS on Core Card

VORTEX CHIPSET

DSLAM REFERENCE DESIGN: CORE CARD

Manually settable header fields are used to direct LVDS flow. The setup must be done before the card is inserted into the DSLAM shelf.

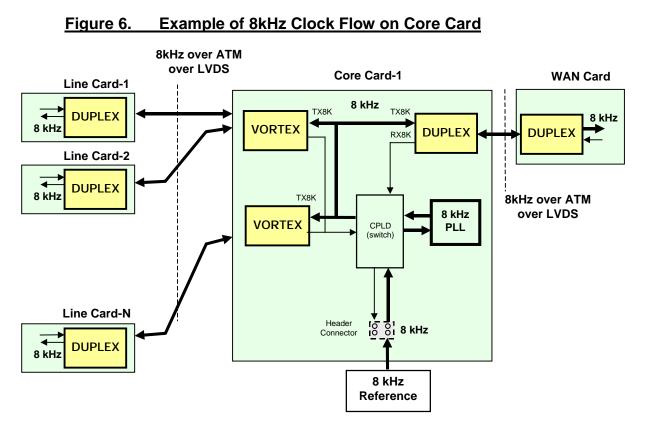
S/UNI-VORTEX-1 and the S/UNI-DUPLEX can provide an interface to J5 or to the front panel. S/UNI-VORTEX-2 provides an interface to the front panel only. The total number of LVDS traces to J5 (and running on the LVDS-backplane) is 40. This large number of high-speed connections may create crosstalk on the cPCI connector. Separating "hot" lines with ground pins can minimize this crosstalk.

The LVDS traces to the front plate connectors are relatively long. Care must be taken to avoid crosstalk to/from digital lines. The front panel connectors are the FireWire type (IEEE 1394), designed to handle differential signals up to 400Mb/s. Other low cost solutions, such as UTP-5 RJ-45 type connectors, are physically too wide to support eighteen ports.

4.2.2. LVDS Transmitters vs. Hot Swap

The LVDS interface is fully hot swap compatible. The LVDS transmitters can stay active or can be turn off (disabled) on live cards, while another card is hot plugged in. For example, the transmitter disable function is executed on the S/UNI-DUPLEX by writing register 0x05 with value 0x30. The S/UNI-VORTEX registers 0x095, 0x0B5, 0x0D5, 0x0F5, 0x115, 0x135, 0x155 and 0x175 disable LVDS transmitter per HSS link by writing 0x08. After inserted card is operable, writing *zero* to appropriate bits in corresponding registers can activate the transmitters.

<u>IMPORTANT</u>: Proper register write sequence is required to ensure cell transfer over the LVDS interface and Utopia bus. The sequence is implemented in the VORTEX Chipset driver files vcs_api1.c and dpx.c. It is important to make sure the S/UNI-DUPLEX OCAEN bit in register 0x0A stays disabled until S/UNI-ATLAS polling is enabled. The OCAEN is set to 1 at the very last write, enabling cell transfer from the S/UNI-DUPLEX at that interface. The above sequence applies to the card that is initialized after power up and also to any card that has interface setup changed. Software designers are required to observe sequencing in their drivers.

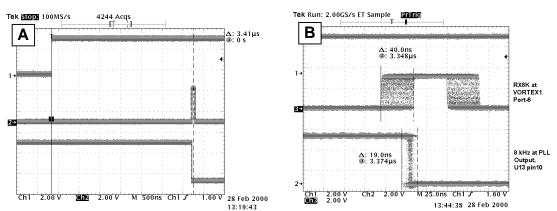

More on LVDS can be found in sections 9.2, 9.3 and 10 in this document.

4.3. 8kHz Interface

The S/UNI-DUPLEX and the S/UNI-VORTEX provide a mechanism for transporting an 8 kHz time stamp over the LVDS connection. This 8 kHz signal is

used to synchronize the whole network with a single reference clock. Figure 6 shows an example of the 8 kHz DSLAM network synchronization.

The 8 kHz signal is entered and received to/from the S/UNI-VORTEX or S/UNI-DUPLEX at the dedicated pins TX8K or RX8K. The time reference is encoded in the third byte of the prepend attached to a modified ATM cell transmitted over the serial high-speed LVDS connection.


A brief description of the circuit is as follows. The 8 kHz clock can be fed to the system at different points – through the Core Card, WAN Card, or Line Cards. The highlighted flow shows 8 kHz distributed from the Core Card. The 8 kHz time stamp is encoded in cells sent by the S/UNI-VORTEX and S/UNI-DUPLEX on the Core Card and then to the S/UNI-DUPLEX on the Line Card and WAN Card. The WAN Card filters out encoding jitter through the 8 kHz PLL, before it is used for further synchronization. The DSLAM Reference Design Line Card can derive 8 kHz time stamp and feed into the Comets. The Comet has an internal 8 kHz dejittering circuit; therefore, cards have no additional 8 kHz PLL.

The Core Card 8 kHz path is controlled through the cPCI bridge and a CPLD.

The received 8 kHz clock on the S/UNI-VORTEX / S/UNI-DUPLEX pin RX8K is a pulse that lasts 16 clock cycles on the clock at the LVDS connection. If LVDS is at 200 MHz, then the pulse is 16 x 5 ns = 80 ns long and repeats at 125 us (8 kHz).

Figure 7 shows an example of an oscilloscope captured time reference that has been recovered on the Core Card.

Example of Received 8 kHz Time Reference Figure 7.

RELEASED

PMC-1990815

Graph A shows the edge of the 8 kHz reference clock inserted to the S/UNI-VORTEX, received time reference pulse at the S/UNI-DUPLEX RX8K output pin, and resynchronized 8 kHz clock at the PLL output.

Graph B shows jitter on the received time reference pulse and edge of the 8 kHz square wave at the PLL output. Attenuated edge jitter is approximately 19 ns, which can be converted to approximately 0.00015 UI peak-to-peak.

For more information about the DSLAM 8 kHz clock distribution, see the DSLAM system design document [1].

Protection switching, executed in our lab, showed no adverse affect on the 8 kHz clock phase and frequency synchronization. For more information about network synchronization and phase-frequency shift, see the DSLAM system design document [1] and also in [9], [16], and [17].

REFERENCE DESIGN PMC-1990815

ISSUE 4

5. CORE CARD CHIPSET OVERVIEW

This section briefly describes the DSLAM chipset.

5.1. PM7324 S/UNI-ATLAS

The S/UNI-ATLAS is the PMC-Sierra standard product that implements the following ATM Layer functions:

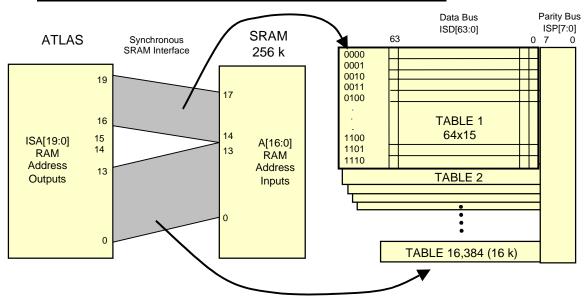
- OAM processing, according to the ITU-T I.610 1995 and 1998 living list.
- Header Translation on full VPI/VCI address range.
- Prepend and postpend tagging.
- Cell rate policing according to ITU-T I.371 using the Generic Cell Rate Algorithm.
- GFR Policing according to ATM Forum's Traffic Management 4.0 1998 living list.
- Per-PHY queuing to prevent head-of-line blocking.

The S/UNI-ATLAS performs both ingress and egress functionality. The ingress side has a SCI-PHY level 2 (Utopia L2) interface at the input, and a SCI-PHY level 1 (Utopia L1) interface at the output. Cells coming into the S/UNI-ATLAS from a PHY are identified according to the PHY ID, VPI, and VCI using a binary search process. The cells are processed according to the information stored in context RAM for the particular connection. Cells may also be copied to the microprocessor cell interface for external processing.

The egress port has a SCI-PHY level 2 interface at both the input and output interface. The connection is identified (using a direct lookup process) by the PHY ID, VPI, and VCI, and processed according to the information in external RAM for the particular connection. Like the ingress port, cells can be copied to the microprocessor cell interface for external processing. The software, VORTEX Chipset Driver that controls the Reference Design Core Card, sets the cell header remapping in the S/UNI-ATLAS. The S/UNI-ATLAS is configured and controlled through a generic 16-bit asynchronous microprocessor bus.

The S/UNI-ATLAS is implemented in low power 3.3 Volt CMOS technology. The microprocessor and JTAG interfaces are 5 Volt/ 3.3 Volt tolerant, while all other interfaces are 3.3 Volt only. The S/UNI-ATLAS is packaged in a 432-pin SBGA package.

ISSUE 4


DSLAM REFERENCE DESIGN: CORE CARD

For a more detailed description of the S/UNI-ATLAS, see the S/UNI-ATLAS Datasheet, PMC-971154 document [4].

5.1.1. Ingress SRAM

The Ingress VC Table is stored externally to the S/UNI-ATLAS in SRAM (Static RAM). The ingress SRAM data bus is 72 bits wide (8 bytes plus byte parity), with an address space of 20 bits (1 M). This creates enough context address space for 64 k VCs. The entire SRAM space does not have to be populatedr. If fewer than 64 k VCs are required or a subset of the S/UNI-ATLAS features are used, then the SRAM may be saved. The Ingress VC Table rows marked as 1011, 1100, 1101, and 1110 may be skipped. (In some isolated cases, mostly with older RAMs, glue logic may be required.)

Figure 8 shows an example of a connection of a Synchronous SRAM 20-bit wide address interface on the S/UNI-ATLAS into a 256 k 17-bit wide address SRAM. This configuration allows 16 k of VC Tables. The figure also shows addressing structure of a VC Table.

Figure 8. S/UNI-ATLAS SRAM VC Table Addressing

The four most significant bits in the ISA bus, ISA[16:19] *must always* be connected. Those bits point to a data row in the VC Table. The least significant portion of the address space can be used as required for each application. The above example uses 14 bits (ISA[13:0]) for the table address. The address space in the example allows addressing for 2^{14} (16 k) VC Tables. Bits 14 and 15 are unconnected.

The total RAM space required for the above example is calculated as follows: (64 + 8) x 15 x 16384 = 17,694720 bits. Two 256 k 36-bit wide RAM devices allow storage of 262,144 x 36 x 2 = 18,874,368 bits. This is provided using one bank of two 256 k by 36 SSRAMs to make up the 72-bit wide data path. As there is only one bank of SSRAM, there is no address decode necessary.

The Reference Design uses two GS88036T 256 k by 36 Synchronous SSRAMs manufactured by GSI Technology, Inc. A 100-pin TQFP package was chosen. Figure 9 shows the Ingress S/UNI-ATLAS to the SSRAM interface.

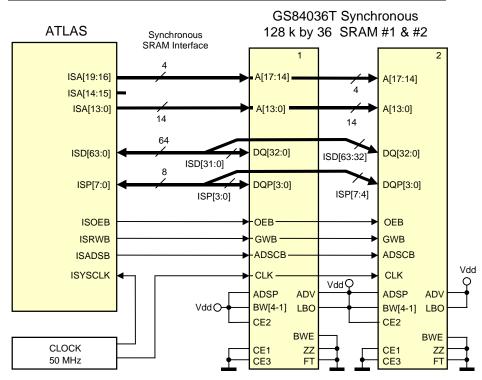


Figure 9. VC Ingress S/UNI-ATLAS-SSRAM Connection

For more information about how other configurations can be implemented, see the appendix in the S/UNI-ATLAS data sheet document, *Interfacing SSRAM to the S/UNI-ATLAS*. The appendix describes SSRAM configurations and several examples. The appendix also lists SSRAMs from various manufacturers that are compatible with the S/UNI-ATLAS and with this design in particular. For the S/UNI-ATLAS, synchronous flow-through (non-pipelined) SSRAMs must be used.

REFERENCE DESIGN PMC-1990815

VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

5.1.2. Egress RAM

The Egress VC Table is stored external to the S/UNI-ATLAS in SSRAM. The addressing structure is similar to the ingress addressing shown in Figure 8. The egress SSRAM data bus is 36 bits wide (4 bytes plus byte parity), with an address space of 20 bits (1 M). This provides for 64 k connections, as with the Ingress VC Table. If fewer than 64 k connections are required or a subset of S/UNI-ATLAS features are used, then SRAM may be saved.

The Core Card Reference Design has enough SRAM to support 16 k connections at the egress port. This is provided using one 256 k by 36 SRAM (1 MB). As there is only a single SSRAM, no address decode is necessary. For the S/UNI-ATLAS, synchronous flow-through, non-pipelined SSRAMs must be used.

The Reference Design uses a GS88036B 256 k by 36 Synchronous SRAM manufactured by GSI Technology, Inc. (in a 100-pin TQFP package).

Figure 10 shows the egress S/UNI-ATLAS – SSRAM interface.

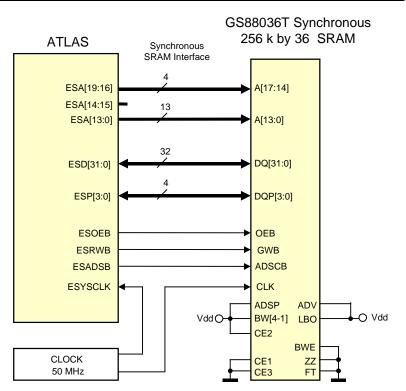


Figure 10. VC Egress S/UNI-ATLAS-SSRAM Connection

The four most significant bits in ESA bus, ESA[16:19] must always be connected.

RELEASED REFERENCE DESIGN PMC-1990815

VORTEX CHIPSET

DSLAM REFERENCE DESIGN: CORE CARD

For more bus termination and signal integrity examples, see section 11 in this document.

5.2. S/UNI-APEX

5.2.1. Functional Description

ISSUE 4

The PM7326 S/UNI APEX is a full duplex ATM traffic management device, that provides cell switching, per-VC queuing, traffic shaping, congestion management, and hierarchical scheduling for up to 2048 loop ports and up to four WAN ports.

The S/UNI APEX provides per-VC queuing for 64K VCs. A per-VC queue may be allocated to any Class of Service (COS), within any port, in either direction (ingress or egress path). Per-VC queuing enables PCR or SCR per-VC shaping on WAN ports and greater fairness of bandwidth allocation between VCs within a COS.

The S/UNI APEX provides three level hierarchical scheduling for port, COS, and VC level scheduling. There are two, three-level schedulers—one for the loop ports and one for the WAN ports. The three-level scheduler for the WAN ports provides:

- Weighted Interleaved Round Robin (WIRR) scheduling across the four WAN ports that enables bandwidth allocation selection between the ports.
- Priority Fair scheduling across the four COSs within each port. This class scheduler is a modified priority scheduler that allows minimum bandwidth allocations to lower priority classes within the port. Class scheduling within a port is independent of activity on all other ports.
- Three types of VC schedulers. VC scheduling within a class is independent of activity on all other classes
 - Shaped fair queuing is available for four classes. If the COS is shaped, each VC within the class is scheduled for emission based on its VCs shaping rate. During class congestion, the VC scheduler may lower a VC rate in proportion to a normalization factor calculated as a function of the VC rate and the aggregate rate of all active VCs within the class.
 - Weighted Interleaved Round Robin scheduling in which weights are used to provide fairness between the VCs within a class.

REFERENCE DESIGN PMC-1990815

ISSUE 4

VORTEX CHIPSET

DSLAM REFERENCE DESIGN: CORE CARD

- Frame continuous scheduling where an entire packet is accumulated before it is transferred to a class queue.

The three-level scheduler for the loop ports provides weighted Interleaved Round Robin (WIRR) scheduling. This scheduling, across the 2048 loop ports, enables bandwidth allocation selection between the ports and ensures that minimal PHY layer FIFOing is required to support a wide range of port bandwidths. Supported port bandwidths are from 32 kb/s to 52 Mb/s.

Priority scheduling across the four COSs within each port. Class scheduling within a port is independent of activity on all other ports.

VCs within a class are scheduled with a Round Robin scheduler or Frame Continuous scheduling. VC scheduling within a class is independent of activity on all other classes. Shaping is not supported on loop ports.

The S/UNI APEX forwards cells through tail of queue enqueuing and head of queue dequeuing (emission), where tail of queue enqueuing is controlled by the VC context record and subject to congestion control, and head of queue dequeuing is controlled by the three level hierarchical schedulers. The VC context record allows for enqueuing to any queue associated with any port and supports full switching from a port to port.

The S/UNI APEX supports up to 256 k cells of shared buffering in a 32-bit wide SDRAM. Memory protection is provided through an inband CRC on a cell by cell basis. Buffering is shared across direction, port, class, and VC levels. The congestion control mechanism provides guaranteed resources to all active VCs, allows sharing of available resources to VCs with excess bandwidth, and restricts buffer allocation on a per-VC, per-class, per-port, and per-direction basis. The congestion control mechanism supports PPD and EPD on a CLP0 and CLP1 basis across per-VC, per-class, per-port, and per-direction structures. EFCI marking is supported on a per-VC basis. Congestion thresholds and packet awareness is selectable for each connection.

The S/UNI APEX provides flexible capabilities for signaling, management, and control traffic. Four independent uP receive queues exist where both cell and AAL5 frame traffic may be enqueued for termination by the uP. A staging buffer is also provided enabling the uP to enqueue both the cell and AAL5 frame traffic to any outgoing queue. AAL5 SAR assistance is provided for AAL5 frame traffic to and from the uP. AAL5 SAR assistance includes the generation and checking of the 32-bit CRC field and the ability to reassemble all the cells from a frame in the VC queue before placement on the uP queues. Any or all of the 64 k VCs may be configured to be routed to/from the uP port. Any or all of the VCs configured to be routed to/from the uP port may also be configured for AAL5 SAR assistance

VORTEX CHIPSET

ISSUE 4

simultaneously. OAM cells may be routed optionally (per-VC selectable) to a uP receive queue or switched with the user traffic. CRC10 generation and checking is optionally provided on OAM cells to and from the uP.

The S/UNI APEX maintains cell counts of CLP0 and CLP1 cell transmits on a per-VC basis. Global CLP0 and CLP1 congestion discards are also maintained. Various error monitoring conditions and statistics are accumulated or flagged.

The uP has access to both the internal S/UNI APEX registers and the context memory, as well as diagnostic access to the cell buffer memory.

The S/UNI APEX provides a 16-bit wide Any-PHY compliant loop side master/slave interface that supports up to 2048 ports. Egress cell transfers across the interface are identified through an inband port identifier prepended to the cell. To accept the cell, the slave devices must match the inband port identifier with their own port ID or port ID range. Per port egress flow control is executed through a 12-bit address polling bus to which the appropriate slave devices respond with out-of-band per port flow control status. Ingress cell transfers across the interface is executed through a combination of UTOPIA L2 flow control polling and device selection for up to 32 slave devices. The Any-PHY loop side interface may be reconfigured as a standard single port 16-bit wide Any-PHY or UTOPIA L2 compliant slave interface. The 16-bit prepends are supported optionally on both ingress and egress for cell flow identification, enabling use with external address resolution devices, switch fabric interfaces, or other layer devices.

The S/UNI APEX provides an 8- or 16-bit Any-PHY or UTOPIA L2 compliant WAN side master interface that supports up to four ports. The 16-bit prepends are supported optionally on both ingress and egress for cell flow identification, enabling use with external address resolution devices, switch fabric interfaces, or other layer devices.

The S/UNI APEX provides a 32-bit microprocessor bus interface for signaling, control, cell, and frame message extraction and insertion, VC Class and port context access, control and status monitoring, and configuration of the IC. Microprocessor burst access is supported for registers, cell and frame traffic...

The S/UNI APEX provides a 36-bit SSRAM interface for context storage that supports up to 4 MB of context for up to 64 k VCs and up to 256 k cell buffer pointer storage. Context Memory protection is provided with 2 bits of parity over each 34-bit word.

The total number of cells, the total number of VCs, support for address mapping, and shaped fair queuing is limited to the amount of context and cell buffer

REFERENCE DESIGN PMC-1990815

DSLAM REFERENCE DESIGN: CORE CARD

memory available. Table 1 shows the most common combinations of memory and features.

Context Memory Size ZBT SSRAM	Cell Buffer Memory Size SDRAM	# VC	# Cell Buffers	Address Mapping Support	Shaping Support
1 MB	4 MB	16 k	64 k	Yes	No
2 MB	4 MB	16 k	64 k	Yes	Yes
2 MB	4 MB	64 k	64 k	No	No
4 MB	16 MB	64 k	256 k	Yes	Yes

TABLE 1. Feature Set as a Function of Memory Capacity

ISSUE 4

NOTE: The table may not correspond to the final settings on the Core Card due to RAM availability and other reasons. Designers should follow the RAM size recommendations outlined in the above table and in the calculations presented in document [12].

The Reference Design Core Card supports the layout for 4 MB of Context Memory SSRAM and 16 MB of Cell Buffer SDRAM, thus allowing 64 k of VCs and 256 k of buffered cells. The maximum RAM size was chosen for evaluation purposes and interface verification. However, due to RAM availability, the Core Card may be populated with smaller size NBT RAM. Board inspection is required to determine actual RAM size. The RAM interfaces are described in following sections.

The S/UNI-APEX provides facilities to enable sparing capability with another S/UNI-APEX device. The facilities enable a *warm standby* capability, in which connection setup between the two devices can be maintained identically but some cell loss occurs at the point of device swapping. The facilities do not include a cell-by-cell lock step between the two S/UNI-APEX devices. To avoid any cell replication, queues in the *spare* S/UNI-APEX are kept empty, causing all queued traffic in the *active* S/UNI-APEX to be lost at the point of switch over. Since connection setup is maintained identically between the two S/UNI-APEX devices, switch over can happen instantaneously allowing you to avoid connection timeout or teardown issues.

The S/UNI-APEX facilities provided are the disable and filter control bits in the Receive and Transmit Control register. These control bits are asserted in the spare S/UNI-APEX to ensure the queues remain empty until swapping is initiated. Alternatively, asserting only the Filter enable bits allow signaling and control traffic continuity to be maintained to the spare S/UNI-APEX. This enables

DSLAM REFERENCE DESIGN: CORE CARD

datapath integrity testing on the spare plane and ensures control communications paths to the spare plane are usable.

5.2.2. Context Memory SSRAM Interface

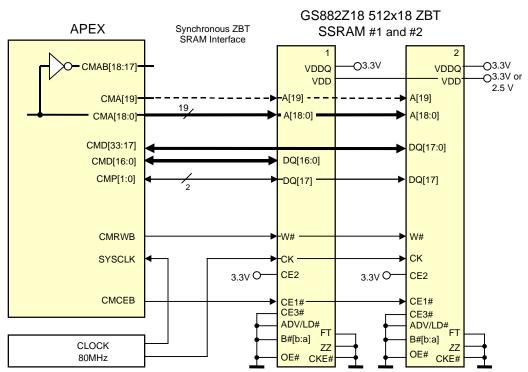
The S/UNI-APEX context memory SSRAM interface can be configured for two types of synchronous RAMs: *Late Write* or *Zero Bus Turnaround*[™] (also known as NBT). The Core Card is assembled with a pipelined ZBT/NBT SSRAM. Schematic and board layout support optional placement of a RAM, up to 2 Mbytes each with address lines CMA<19..0> connected. Also, the layout supports the RAM core supply at 2.5 V for GS8162Z18 (the pinout is preliminary at the time this document is created, and pinout verification is advised). The GS162Z18 option requires zero-ohm resistor that strap 2.5 V to the CORE1 rail. Other RAMs from Samsung and possibly from IDT and Cypress may be placed with minimum rework on the board. Schematic and layout, of the Core Card Reference Design Issue. 3, supports only GSI GS882Z18 NBT RAM without any strapping. RAMs are set in a single bank that consist of two 512 M x 18 ZBT SRAMs (1 MByte each) and provide 2 MB of SSRAM memory.

The SSRAM bus is clocked at 80 MHz. Signal integrity simulation and timing simulation was done to derive design guidelines. Serial termination resistors are inserted in data path to attenuate backreflections and improve signal integrity. For more examples on bus termination and signal integrity, see Section 11, *Bus Termination Examples*, in this document.

The S/UNI-APEX SSRAM address bus CMA[19:0] is connected with all lines that allow an address up to 1,048,576 (1 M). CMCEB is used to control chip selection on RAMs.

The data bus CMD[33:0] is split into lower and upper chunks and connected to respective SSRAM devices. Each 17-bit wide segment is associated with a parity bit CMP[0] or CMP[1], which are connected to the corresponding DQ[17:0] 18-bit wide ports on the SSRAM devices. The S/UNI-APEX generates the parity bit , which is stored into RAM.

The OE# inputs on the SSRAM is tied to ground. The read/write line CMRWB determines if the data bus is in a read or write cycle. For more information about bus timing, see Section 11, *Bus Termination Examples*, in this document.


If the S/UNI-APEX detects a parity error, the two parity bits protecting the 34-bit data bus can trigger an interrupt at the S/UNI-APEX. Parity check generation can be used to detect data corruption in highly reliable data transfer protocols or networks.

DSLAM REFERENCE DESIGN: CORE CARD

Figure 11 shows the S/UNI-APEX to the SSRAM interface.

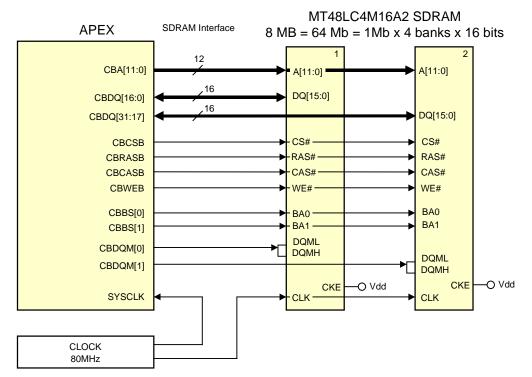
Figure 11. Dual Bank Configuration for ZBT SSRAM

For examples of a generic interface to SSRAM, see the S/UNI-APEX data sheet.

The Core Card schematic Issue 3 on page 9 shows an optional core supply with 2.5 V for larger NBT SSRAMs. The board is laid out with a copper cutout underneath the RAMs, allowing a 3.3 V or 2.5 V supply with different resistors placement on assembly line. The Core Card printed circuit board Rev. 3 is assembled with a 3.3 V version of NBT SSRAM. The designer should evaluate the availability of RAMs, and possibly choose to eliminate the 2.5 V supply by shorting the copper cutout to 3.3 V.

5.2.3. Cell Buffer SDRAM Interface

The Reference Design shows the S/UNI-APEX with 16 MB of SDRAM for queued cell buffering. The SDRAM buffer consists of a single bank with two RAMs for a 32-bit wide data path that provides room for up to 64 k cells. The SDRAMs are Micron's MT48LC4M16A2TG 8 MB (size derived from 1 Mb x 16 x 4 banks = 64 kb = 8 MB). PMC-1990815


VORTEX CHIPSET

DSLAM REFERENCE DESIGN: CORE CARD

The S/UNI-APEX allows CRC-16 check on the first 60 bytes in per-cell basis of the data from the SDRAM. If an error occurs, an interrupt is sent to the microprocessor.

Figure 12 shows an example of a 16 MB SDRAM.

Figure 12. Single Bank SDRAM 4 MB for 64 k Cells

The data mask signals CBDQM[1:0] at the S/UNI-APEX control the read/write cycle on the CBDQ[31:0] bus.

The S/UNI-APEX and SDRAMs run at 80 MHz for the Core Card. Bus termination and signal integrity examples are shown in this document in Section 11, *Bus Termination Examples*,

5.3. S/UNI-VORTEX

The PM7351 S/UNI-VORTEX is a monolithic integrated circuit typically used with its sister device, the S/UNI-DUPLEX, to implement a point-to-point serial backplane interconnect architecture.

Multiple S/UNI-VORTEX devices can reside on a common cell processing card beside a traffic management device. The traffic management device exchanges

REFERENCE DESIGN PMC-1990815

VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

cells with the S/UNI-VORTEX through a 16-bit wide SCI-PHY or Any-PHY interfaces (bus). The flow control is affected across this interface through cell available signals that the S/UNI-VORTEX generates. In the downstream direction, the traffic management device can poll for the availability of a buffer for each logical channel. In the upstream direction, an indication is provided whether one or more cells are queued in the S/UNI-VORTEX for transfer.

Each S/UNI-VORTEX can be connected to eight Line Cards through high-speed 100 to 200 Mb/s serial links. Each upstream link has its own queue. If a queue becomes nearly full, a flow control indication is sent downstream. In the downstream direction, each logical channel has a dedicated cell buffer to avoid head of line blocking. The serialization of cells from the cell buffers is throttled by flow control information sent from the line card through the upstream high-speed link.

A microprocessor port provides access to internal configuration and monitoring registers. That port can also be used to insert and extract cells in support of a control channel.

LVDS INTERFACES, BOTH DIRECTIONS:

- Eight independent four-wire LVDS serial transceivers, each operating at up to 200 Mbps across PCB or backplane traces or across up to 10 meters of four-wire twisted pair cabling for inter-shelf communications.
- Usable bandwidth (excludes system overhead) of 186 Mbps, for each direction of each LVDS link.
- Fully integrated LVDS clock synthesis and recovery. No external analog components are required.

RECEIVE DIRECTION:

- Weighted round-robin multiplex of cell streams from the eight LVDS links into a single cell stream that is transferred to the parallel bus under control of the bus master.
- LVDS link and S/UNI-VORTEX identifiers that are added to each cell (along with the PHY identifier already added by S/UNI-DUPLEX) for use by the ATM layer to identify the cell source.
- Back-pressure that is sent to the far end to prevent an overflow of the receiver FIFO.

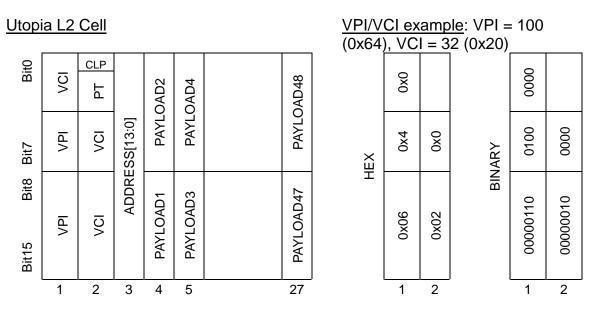
TRANSMIT DIRECTION

 Per-PHY and microprocessor port back-pressure that are used on each of the eight links to prevent the overflow of downstream buffers. RELEASED REFERENCE DESIGN

PMC-1990815

VORTEX CHIPSET

ISSUE 4


DSLAM REFERENCE DESIGN: CORE CARD

- Device polling that provides Utopia-like TCA status for 264 PHYs (includes 8 control channels), based on back-pressure from the LVDS links.
- Cell transfer, where the bus master adds a PHY address to each cell through a 12-bit identifier. The S/UNI-VORTEX decodes and accepts the cells for its links, based on software-configured base addresses.

PARALLEL BUS INTERFACE:

- Both directions: 16-bit wide, 50 MHz maximum clock rate, bus slave.
- Cells transferred to the bus Utopia L2 compatible with optional expanded length cells. The cell appears as from a single PHY, with a cell prepend that identifies the source PHY ID of each cell. Alternatively, Utopia L2 compliance is supported by placing the PHY ID inside the UDF/HEC fields of a standard ATM cell.
- Cells received from the bus. The Any-PHY bus is similar to Utopia L2, however with optional expanded length cells and expanded addressing capabilities. The S/UNI-VORTEX appears to the bus master as a 264port, multi-PHY device (eight links, each with 32 PHYs & a communication channel). The PHY address is added as the cell prepend or optionally in the HEC/UDF field when standard length cells are desired.

Example of a 16-bit wide UTOPIA L2 cell is shown below.

Core Card software driver applications sets UL2 bus to have word 3 overwritten with logical channel ID from S/UNI-VORTEX and phy ID from S/UNI-DUPLEX.

DSLAM REFERENCE DESIGN: CORE CARD

MICROPROCESSOR INTERFACE

• 8-bit data bus, 8-bit address bus.

ISSUE 4

- Provides read/write access to all configuration and status registers.
- Provides CRC32 calculation and cell transfer registers to support an embedded microprocessor-to-microprocessor communication channel over the LVDS link.

5.4. S/UNI-DUPLEX

The PM7350 S/UNI-DUPLEX is a monolithic integrated circuit typically used for traffic concentration within a DSLAM. The device is ATM specific. It exchanges contiguous 53 byte cells with PHY devices. The PHY interface can be either clocked serial data or SCI-PHY/Any-PHY.

A clocked serial data configuration of up to sixteen channels is supported. Cell alignment is established through HCS (Header Check Sequence) delineation. The cell payload is scrambled and descrambled with a x^{43} + 1 polynomial. Rate adaptation is performed through idle cell insertion and extraction. Each PHY interface has a dedicated four-cell FIFO in both upstream and downstream directions.

All cell streams are multiplexed into a high-speed serial stream. Each S/UNI-DUPLEX can connect to two 100 to 200 Mb/s Low Voltage Differential Signal (LVDS) serial links. The internal transmit clock is synthesized from a lower frequency reference run at 1/8 of the line rate. An extended cell format provides four extra bytes for the encoding of flow control, timing reference, PHY identification, and link maintenance information. A redundant link is provided to allow connection to two cell processing cards.

A microprocessor port provides access to internal configuration and monitoring registers. The port may also be used to insert and extract cells in support of a control channel.

The S/UNI-DUPLEX is typically used with its sister device, the S/UNI-VORTEX, to implement a point-to-point serial backplane interconnect architecture.

For more information about S/UNI-DUPLEX, see the S/UNI-DUPLEX Datasheet.

REFERENCE DESIGN PMC-1990815

ISSUE 4

5.5. CPCI Bridge

This section briefly introduces the cPCI bridge functionality.

5.5.1. PCI9054 PCI Bridge

To interface the VORTEX chipset residing in the Core Card to the host CPU residing in slot 1 of the cPCI shelf, a PCI-to-Local-bus bridging device is required. The device chosen for this Reference Design is the PLX PCI9054 PCI Bus Master I/O Accelerator Chip. Some features that were deciding factors in becoming the bridge of choice for this Reference Design are:

- PCI v2.2 compliant 32-bit 33 MHz Bus Master Interface Controller that enables PCI Burst Transfers up to 132 Mbytes/second
- General Purpose Bus Master Interface featuring an advanced Data Pipe Architecture[™] which includes two DMA engines, programmable Target and Initiator data transfer modes and PCI messaging functions
- PCI v2.2 Power Management Spec compatible
- Flexible +3.3 V, +5 V Tolerant Local Bus operation up to 50 MHz
- 32-bit multiplexed, or non-multiplexed local bus supporting 8-, 16-, and 32-bit peripheral and memory devices
- CompactPCI hot-swap capability

Since the S/UNI-APEX requires a multiplexed bus, for this Reference Design, the PCI 9054 bridge is programmed to perform in a 32-bit multiplexed mode (J mode). The fact that the S/UNI-APEX is a 32-bit device, the S/UNI-ATLAS is a 16-bit device, and the S/UNI-VORTEX and S/UNI-DUPLEX are both 8-bit devices adds complexity to the local bus, on which they all reside. While the local bus can support 8-, 16-, and 32-bit devices, for this Reference Design, the PCI 9054 operates solely in 32-bit mode. (For more information, see section 8.4.)

5.5.2. SEEP Basics

The PCI 9054 provides a serial EEPROM (SEEP) port for loading configuration information on power-up and reset. The SEEP is programmed with address space boundaries for the VORTEX chipset and the Core Card IDs. The CPLD is used with the PCI9054 to provide address decoding and microprocessor port control for the DSLAM chips being accessed from the PCI bus. For more information about SEEP, see sections 8.6 and 8.7.

Examples of data reading on reset are shown in section 16 APPENDIX C: EXAMPLE OF SEEP READING ON RESET in this document.

REFERENCE DESIGN PMC-1990815

VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

6. SIGNAL FLOW ON THE CORE CARD IN BRIEF

6.1. Upstream Direction

The following process refers to the VORTEX Chipset Driver defaults or test routines, for example, the cells on Utopia L2 into the S/UNI-ATLAS Ingress are 27 words with the ID written into the HEC/UDF word.

Cells that originate from a Comet or PHY device on the Line Cards and are destined for the WAN Card are manipulated in the following manner:

- Upstream cells are received by the PHY and buffered until the S/UNI-DUPLEX reads them. As a cell is read from the PHY, the S/UNI-DUPLEX writes the originator PHYID[4:0]—or microprocessor ID, in the case of the embedded Inband Communication Channel (ICC)—into the LVDS data structure and sends the cell through the LVDS serial link to its corresponding S/UNI-VORTEX on both the active and stand-by Core Cards.
- The S/UNI-VORTEX receives cells by servicing its eight links in a simple weighted round-robin fashion. As the S/UNI-VORTEX reads cells from the high-speed serial link, it inserts into the HEC/UDF field the ADDR[13:0], which contains its own hardwired S/UNI-VORTEX ID VADR[4:0] (ADDR[13:9]), the high speed LINKID[2:0] (ADDR[8:6]), and the logical channel ADDR[5:0]. At this point, cells are available to the Scy-PHY/UL2 bus that connects the S/UNI-VORTEX to the S/UNI-ATLAS. (software test routines generate cells which are Utopia L2 compatible.)
- After an upstream cell is read in by the S/UNI-ATLAS, it will use the PHYID, LINKID, and VORTEX IDs to perform a lookup function that results in a short connection (or switch) tag being inserted into the HEC/UDF before passing it to the S/UNI-APEX. The S/UNI-APEX uses the tag to directly address the context and control information pertaining to the cell. The present test routines (supplementing VORTEX Chipset Driver) translate the header in the S/UNI-ATLAS.
- The S/UNI-APEX provides per-VC congestion control, buffering, and queuing, and provides switching and traffic shaping into four high-speed WAN up-link ports. Upstream traffic is passed from the S/UNI-APEX back through the S/UNI-ATLAS Egress. The S/UNI-ATLAS first provides counting and OAM functionality. Then the S/UNI-ATLAS transfers the data onto the Core Card's S/UNI DUPLEX to transmit over the LVDS serial link onto the WAN Card.

REFERENCE DESIGN PMC-1990815

VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

The S/UNI-DUPLEX on the Core Card first writes the destination PHY ID (3:0) (or EIC) into all cells. Then the S/UNI-DUPLEX transmits them to the S/UNI DUPLEX that resides on the WAN Card. The upstream traffic received by the WAN Card's S/UNI-DUPLEX is passed onto the card's S/UNI-QJET, which frames the data into DS3 format and sends it out over the appropriate (one of four) DS3 link.

6.2. Downstream Direction

The following process refers to the software driver defaults or test routines, for example, the cells on Utopia L2 into S/UNI-ATLAS Ingress are 27 words with the ID written into the HEC/UDF word.

Cells that originate from the WAN and are destined for a Line Card or PHY device are manipulated in the following manner:

- Data received by the WAN Card's four DS3 links is passed to the S/UNI-QJET which multiplexes the data, and sends it to the WAN Card's S/UNI-DUPLEX for transmission to the Core Card over the high-speed serial link. The WAN Card's S/UNI-DUPLEX writes the originator PHY ID (3:0) into the LVDS data structure before transmitting data to the CORE card.
- Downstream data received by the Core Card's S/UNI-DUPLEX is passed to the S/UNI-ATLAS. The cells proceed through the S/UNI-ATLAS and onto the S/UNI-APEX, where all ATM layer functions are performed on the cells. The S/UNI-APEX appends to all PHY-destined cells a unique 12-bit address that identifies the destination S/UNI-VORTEX, LINK, and PHY IDs (or S/UNI-VORTEX, LINK, and the EIC). The data is then placed on the ANY-PHY bus that connects the S/UNI-VORTEX devices to the ATM layer of the DSLAM shelf. The present test routines (supplementing Chipset Driver) translate header in the S/UNI-ATLAS.
- The 12-bit address is used by the S/UNI-VORTEX devices that are connected to the ANY-PHY bus to determine whether or not a cell placed on the bus is destined for them; if they are, then the cell should be read.
- Downstream cells received by the S/UNI-VORTEXes are stripped of the prepended address segment. The S/UNI-VORTEX writes the destination PHY ID into the LVDS data structure and sends cells across the appropriate LVDS serial link (7:0) to the corresponding S/UNI-DUPLEX device that resides on the Line Card.
- The Line Card's S/UNI-DUPLEX device, after receiving cells from the high-speed serial interface, strips the prepended bytes from the cells and sends the data to the appropriate PHY (or to the microprocessor in the case of the ICC).

REFERENCE DESIGN PMC-1990815 PMC-Sierra, Inc.

VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

7. HOT SWAP

The Core Card has been designed to be hot-swap compatible. The Hot Swap Specification [19] states: "The basic purpose of the Hot Swap addition to CompactPCI is to allow the orderly insertion and extraction of boards without adversely affecting system operation."

7.1. cPCI and Power Rail Hot Swap

The Core Card uses a hot-swap compatible cPCI bridge, PLX PCI9054, and a hot-swap controller, the Linear Technology LTC1654. The cPCI connector is assembled with three different length pins, as required by the Hot Swap Specification [19]. The supporting circuitry is also carefully designed to not impair the hot-swap ability. Figure 13 shows an example of the hot-swap circuit.

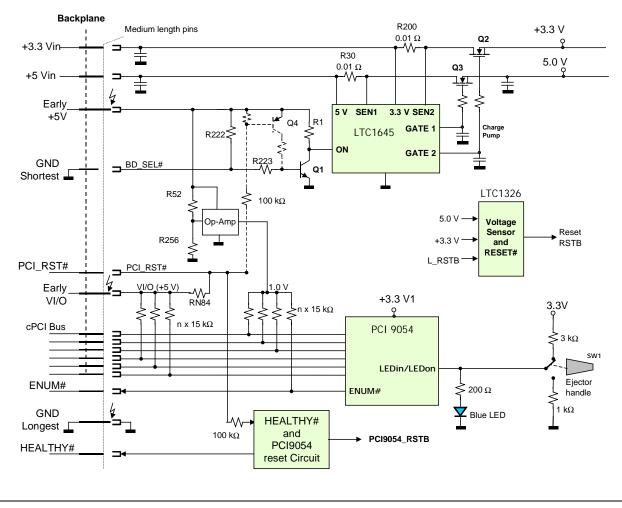


Figure 13. Example of a Hot-Swap Circuit

REFERENCE DESIGN PMC-1990815

VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

The above figure shows that the card is about to be placed into the shelf. The first three mating pins are: the longest GND (ground), the longest +5V (if cPCI is +5 V environment), and long VI/O. The longest +5V pin is also called *early 5 V*. In a 3.3 V environment, it is referred to as *early 3.3 V*. The early VI/O polarizes some of the cPCI bus pins with +5V through 15 kohm resistors. The early +5V flows into a network of resistors and transistors. The current is limited to few mA. The

Op-Amp, biased with the resistive divider R52/R256, provides about 1.0 V of the precharging voltage to the selected cPCI bus interface lines through n x 15 kohm resistors. Immediately after the early +5 V and GND pins are connected, the current flows through resistors R222 and R223, forcing transistor Q1 to saturate and hold the *ON* pin on LTC1645 at *low*. That activity keeps the *GATE1* and *GATE2* pins on the swap controller at low voltage and in turn keeps both MOSFET transistors opened (off).

Card insertion proceeds, and some milliseconds later, the medium length pins on the J1 connector (most of the pins) mate with the cPCI backplane. The +5 Vin line connects to: Vcc on LTC1645, and transistors Q2 and Q3 (through R30 and R200).

When the card is pushed deep into the connector, finally the shortest pin (*BD_SEL#*) connects ground to the node with resistors R222 and R223. That activity turns off Q1 and allows the *ON* pin to go *high*. The LTC1645 starts internal timer, and at the same time starts ramp voltage at the *GATE1/2* pins. After about 50 ms, the *GATE1/2* voltage turns on transistors Q30 and Q200 gradually, limiting the inrush current. Eventually, *GATE1/2* goes above 12 V (controlled with internal pump charge) and turns transistors Q30 and Q200 completely on.

The reset and voltage supervising device LTC1326 senses +5 V and 3.3 V going above the predefined threshold, triggering the internal timer, which sets RSTB high after about 200 ms. The LTC1326 device also allows two additional control lines triggering reset at the RSTB line. One of the lines is connected through a resistor to the cPCI reset line PCI_RST#. The other line is connected to the PCI9054 reset output, allowing for software reset on the local bus.

At this point, the +3.3 V is supplied to the PCI9054 cPCI bridge. The PCI9054 sets *ENUM#* (open drain active low) signaling to the host CPU, indicating that a new card is inserted. The *ENUM#* line stays low until the host processor toggles the bit in the internal register at the PCI9054 bridge. If the ejector handle is fully closed and the microswitch is activated, and if the host card RESET (PCI_RST#) is activated and released, the *ENUM#* line goes from low to high.

REFERENCE DESIGN PMC-1990815

VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

If the "PCI_RST#" is asserted (held low) by the host processor card (while the card is inserted or at any time), then the LTC1326 keeps *RSTB* asserted. Optionally, the *PCI_RST*# can be connected through a 100 kohm resistor to the base of the P-channel transistor Q4. If the *PCI_RST*# is asserted, then the Q4 turns on and forces the current through a resistor and the base of transistor Q1. This keeps Q1 saturated, and the LTC1645 via both MOSFETs cuts off +5 V and 3.3 V to the card. If the card is already powered, the assertion of the *PCI_RST*# turns off transistors Q30 and Q200 and cuts off supply voltage to the rest of the circuit – a sort of a very hard reset.

NOTE: the serial 0.01 ohm resistor and copper traces in +3.3 V path gives over 35 mV drop at sensing pins at LTC1645. That may create hypersensitivity to small glitches, as the threshold level on sensing pins on LTC1645 is about 50 mV. Designers should observe voltage drop and adjust resistor value to have sensing voltage less than $\frac{1}{2}$ of the threshold (or add RC filtering elements). If LTC1645 on the Core Card triggers too often, then resistor can be temporary shorted.

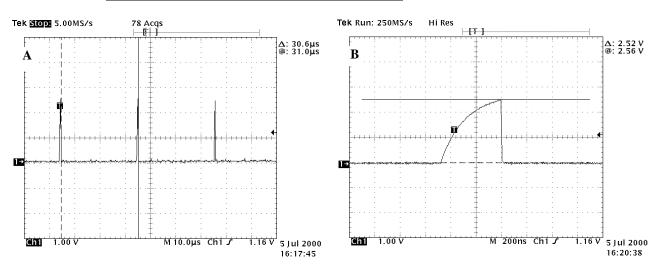
The toggling switch SW1 through the front panel ejector handle initiates the card removing software sequence. The PCI9054 sets *ENUM#* to low and informs the host CPU that the card is about to be removed. The blue LED remains turned off (dark) until the host CPU confirms it is safe to remove the card; at this point, the blue LED is turned on. The supply voltage removal is a reversed action of the insertion with the very first pin (*BD_RST#*) disconnected. That action forces Q1 to saturate and the *ON* pin to go low. The *GATE1/2* voltages are turned off. In turn, transistors Q30 and Q200 are off as well. The turn-off ramps are uncontrolled and abrupt.

An accidentally toggled ejector handle may trigger software action. If the ejector handle is returned to its operating position, the system may detect it and start the boot-up procedure, as if the card had just been inserted.

NOTE: Hot-swap action requires software, which is not supported with this release of the Reference Design board level driver. Also, the host processor card must support the detection of ENUM# activity for the software hot swap.

7.2. LVDS Hot Swap

The LVDS interface is fully hot swap compatible. Proper register write sequence is required to ensure cell transfer on the LVDS and Utopia bus. The sequence is implemented in the VORTEX Chipset driver files vcs_api1.c and dpx.c. The most important is to make sure the OCAEN bit in register 0x0A stays disabled until S/UNI-ATLAS polling is enabled. The OCAEN is set to 1 in the as the very last


VORTEX CHIPSET

DSLAM REFERENCE DESIGN: CORE CARD

write, allowing cell transfer from the S/UNI-DUPLEX at that interface. Software designers are required to observe sequencing in their drivers.

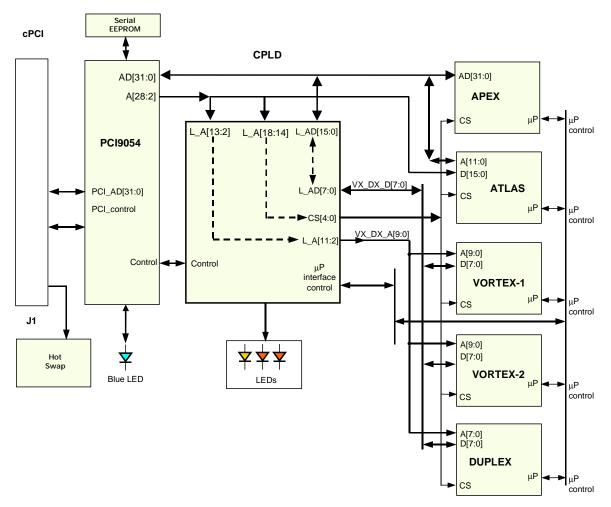
7.3. Blue LED and Microswitch Control

The LEDON/LEDIN, pin 53 on PCI9054 (LED_SWITCH\I), is continuously sampled to detect the position of the microswitch. Figure 14 shows the sampling signal.

Figure 14. LED_SWITCH\I Line SiganI

Graphs A and B show a sampling signal output by PCI9054 pin53 LEDON/LEDIN (schematic signal LED_SWITCH\I), captured at TP115 (R233). The microswitch must be in a position where the 3 kohm pull-up resistor (R243), is connected to the LED_SWITCH\I line. Internal to PCI9054 capacitor is charged with that resistor, making time constant of about 200 ns – derived from graph "B" above. The internal capacitor can be calculated at about 60 pF. If resistor is disconnected, the sampling pulses disappear.

REFERENCE DESIGN PMC-1990815


DSLAM REFERENCE DESIGN: CORE CARD

8. CPCI INTERFACE, PCI BRIDGE AND CPLD

ISSUE 4

8.1. Control Interface Block Diagram

Figure 15 shows the block diagram for the cPCI and local bus microprocessor interface on all chips.

Figure 15. cPCI and Local Bus Microprocessor Interface

The 32-bit multiplexed PCI_AD[31:0] ADRESS/DATA bus connects through 10 ohm resistors from the J1 connector to the PLX PCI9054 bridge. The PCI side of the PCI9054 is described in the data book (the PCI interface is beyond the scope of this document). Throughout the Core Card test procedures, problems relating to the PCI interface were not experienced. Proper layout and component soldering assured flawless access to the cPCI bus. Some problems were related

REFERENCE DESIGN PMC-1990815

VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

to the size of the SEEP, which must be 4 kbit (for example, NM93CS66). Also, the VORTEX Chipset Driver must match the data stored in the SEEP, must read registers on each chip properly, and verify chip revision. As of July 2000, the chipset revision is as follows: S/UNI-DUPLEX rev. B, S/UNI-VORTEX rev. B, S/UNI-APEX rev. B, and S/UNI-ATLAS rev. D. Designer should check if available devices have other revision numbers.

The local bus side is described as follows. The bridge is set to Multiplexed Bus Mode, as required by the S/UNI-APEX, which operates only with a multiplexed bus (address and data on the same bus). The remaining devices have the microprocessor interface option to work in both the multiplexed and non multiplexed modes. For this Reference Design, those devices operate in nonmultiplexed modes. Part of the Core Card board address and data are run through the CPLD, allowing a more balanced load on the local bus LAD[31:0]. The LAD[31:0] bus connects directly from the PCI9054 to the S/UNI-APEX microprocessor address/data port. Bits LAD[15:0] connect also to CPLD and to the S/UNI-ATLAS microprocessor data port. On the S/UNI-VORTEX1, S/UNI-VORTEX2, and S/UNI-DUPLEX, bits LAD[7:0] are routed to the data ports through the CPLD. A direct connection from the PCI 9054 to the local devices creates uneven loads and trace lengths for different bus lines-with the highest capacitance load and the longest traces on lines LAD[7:0] (all devices), and the lowest at LAD[31:16] (S/UNI-APEX only). For this reason, lines LAD[7..0] are routed through the CPLD. Also, proper resistive termination placed along the bus lines helps with signal integrity, as shown later in this document. Signal integrity issues, such as, edge distortion and overshoot, can corrupt data and/or prevent the bus from operating at the maximum speed.

The PCI9054 has an additional dedicated address bus LA[28:2] that allows chip select CS[4:0] to be stable during data cycles and during burst read/writes (no address latch needed). The LA[28:2] bus is split in two sections: lower LA[13:2] for register address and higher LA_SEL[4:0] for chip select. The LA[13:2] is routed directly to the S/UNI-ATLAS microprocessor address port and to the CPLD. The CPLD connects some of those lines to the S/UNI-DUPLEX and S/UNI-VORTEX microprocessor address ports. The LA[28:2] address does not include the least significant two bits. Those two bits are used as byte indicators when accessing an 8-bit wide address. For 32-bit addresses, all addresses are expected to be long-word aligned, making the least significant two bits always *00*. More on local bus is shown in section 8.4.

The CPLD receives data and address lines from the PCI9054,not only for buffering purposes, but also for reading and writing of the CPLDs internal registers. The CPLD also provides additional control lines to and from all DSLAM chips.

REFERENCE DESIGN PMC-1990815

VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

8.2. PCI Bridge – CPLD Interface

The PCI9054, with the CPLD, have the job of providing an interface to five VORTEX chipset devices that reside on the Core Card, and to the host processor card that reside at slot 1 of the cPCI shelf. The VORTEX chipset connects to the local bus for which the PCI9054 is the Bus Master. The microprocessor ports of each devices are partially fed by the CPLD. The other portions of the microprocessor interfaces are fed directly from the PCI9054, for example, the address and data at S/UNI-APEX and S/UNI-ATLAS.

The CPLD receives all local control signals from the PCI9054 and the address lines required for device decoding. The CPLD is programmed to provide all necessary functions to the DSLAM devices' microprocessor ports. These functions include chip select, read data, write data, interrupt, and burst for those devices that support bursting –(in this Reference Design, only the S/UNI-APEX).

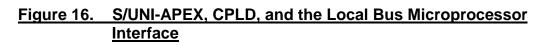
The host processor card initiated transfer is serviced by the PCI 9054, which receives instructions and passes the control signals and address/data lines to the CPLD. The CPLD decodes the address and supplies the correct control signals to the DSLAM device being accessed.

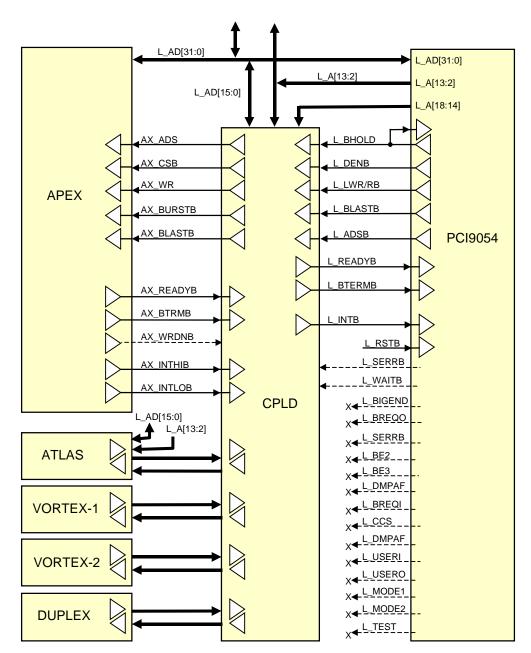
8.3. Major Control Lines Between S/UNI-APEX, CPLD and PCI9054 Interface

The PCI9054 provides address/data bus, local address bus, and a set of control lines on the local side. The CPLD plays a key role in creating proper signaling on the multiplexed bus.

Figure 16 shows the address, data buses and control lines for the S/UNI-APEX and other devices.

REFERENCE DESIGN PMC-1990815




ISSUE 4

VORTEX CHIPSET

DSLAM I

DSLAM REFERENCE DESIGN: CORE CARD

The block diagram shows the detailed connections to the S/UNI-APEX and general connections to other devices. The PCI9054 provides numerous control lines. The active signals, L_HOLD, L_DENB, L_LWR/RB, L_BLASTB, and L_ADSB are connected to the CPLD. Two additional lines L_SERRB and

39

VORTEX CHIPSET

ISSUE 4

L_WEITB are also connected but not used for the CPLD logic. CPLD outputs three control lines: L_READYB, L_BTERMB, and L_INTB terminated at the PCI9054 bridge. The L_INTB line is a combined interrupt from all devices. The AX_BURSTB line is connected from CPLD to the S/UNI-APEX, and it is always asserted when accessing the S/UNI-APEX. Other control lines are not used and may have pull-up or pull-down resistors.

For more information about S/UNI-ATLAS, S/UNI-VORTEX, and S/UNI-DUPLEX interfaces, see the schematics.

Examples of the signal timing are shown in section 17 APPENDIX D: LOCAL BUS TIMING EXAMPLES in this document.

8.4. Address Mapping

In the Reference Design, there is a local bus on which a 32-bit device (S/UNI-APEX), a 16-bit device (S/UNI-ATLAS), and 8-bit devices (S/UNI-DUPLEX and S/UNI-VORTEX) reside. This constraint provides two possibilities:

- To use the 9054 ability to provide a dynamic interface to a 32-bit PCI bus to 8-, 16-, and 32-bit local busses. While this option would have maximized memory efficiency on the CPU side, it also would have increased the design's complexity, in both hardware and software.
- To treat all devices as if they were 32 bit devices (the option chosen for this Reference Design). The CPU assigns a 32-bit address space to all devices. For 8-bit devices, 24 bits of every CPU word are ignored. For the 16-bit device, half of all CPU words are ignored. The major fault with this design choice is the waste of CPU memory. However, because the DSLAM chipset does not require a large amount of memory space, this design choice is acceptable, given that it reduces the design's complexity.

Address translation works as follows. For a 32-bit local bus, the PCI9054 expects all addresses to be word (32-bit) aligned, causing all addresses to end with *00*. As a result, the PCI9054 does not even provide the lowest two address bits on the local address bus (LA<28:2>). To accommodate this, every local address is mapped to a word-aligned boundary on the CPU side, that is, register 0011b on the S/UNI-DUPLEX is addressed as 1100b on the CPU side. Because the third S/UNI-DUPLEX register is mapped to the twelfth CPU register, several CPU registers are unused. This corresponds to the ignored bits mentioned in the previous paragraph. The same register on the local bus is derived in hex as 0x03 * 4 = 0x0C and with the offset specific to this Reference Design, it becomes the S/UNI-DUPLEX address 0x1400C.

VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

8.5. PLX PCI9054 Address Spaces

The PCI9054 offers three separate local address spaces, which can be programmed individually to offer 8-, 16-, or 32-bit accesses, burst capability, wait states, etc. If this design had used different local bus widths for the different designs, all three-address spaces would have been necessary. The three-address spaces are not necessary because all the devices are treated as 32-bit devices. For this Reference Design, a one-address space is used for all devices.

8.6. Card ID Number

The Card ID number stored in the SEEP may change with the progress of the programming work. It is recommended to remove SEEP, and place in a programmer and read content.

TABLE 2 shows application-specific Card ID numbers, stored in the SEEP.

SEEP		00h	02h	44h	46h
Version	Device	Device ID	Vendor ID	Subsystem ID	Subsystem Vendor ID
Preliminary*	-	0022h	5056h	000Dh	5056h
SP	Unconfigured	9054h	10B5h	2350h	11F8h
	PLX 9054		PLX	DSLAM Core Card Kit	PMC-Sierra

TABLE 2. DSLAM PCI Card ID Codes

*/ Some Core Cards may have preliminary SEEP load. Also, the SP version has the Class Code set to 0x0600, for a PCI bridge.

The present version of ID load is described as follows. The 10B5 hex is the PLX registered vendor ID. The 11F8 hex is the PMC-Sierra registered vendor ID. Subsystem ID 2350 hex is unregistered ID for the Core Card Kit.

8.7. Serial EEPROM Load Registers

The PLX 9054 can be initialized to a large extent by reading the data from its serial EEPROM (SEEP) port during initialization. Reading the data from the SEEP is equivalent to directly writing to the 9054 configuration registers through the CPU.

41

PMC-1990815

REFERENCE DESIGN

VORTEX CHIPSET

DSLAM REFERENCE DESIGN: CORE CARD

The DSLAM Reference Design Core Card includes a SEEP for this purpose. Table 3 shows the SEEP Load Registers' contents.

TABLE 3.PLX 9054 Serial EPROM Load Registers

ISSUE 4

SEEP Offset	Description	PLX 9054 Register Bits Affected	Setting
0h	Device ID	PCIIDR[31:16]	9054h
2h	Vendor ID	PCIIDR[15:0]	10B5h
4h	Class Code	PCICCR[23:8]	0600h
6h	Class Code / Revision	PCICCR[7:0] / PCIREV[70]	0000h
8h	Maximum Latency / Minimum Grant	PCIMLR[7:0] / PCIMGR[7:0]	0000h
Ah	Interrupt Pin / Interrupt Line Routing	PCIIPR[7:0] / PCIILR[7:0]	0100h
Ch	MSW of Mailbox 0	MBOX0[31:16]	0000h
Eh	LSW of Mailbox 0	MBOX0[15:0]	0000h
10h	MSW of Mailbox 1	MBOX1[31:16]	0000h
12h	LSW of Mailbox 1	MBOX1[15:0]	0000h
14h	MSW of Range for PCI to Local Address Space 0	LAS0RR[31:16]	FFFEh
16h	LSW of Range for PCI to Local Address Space 0	LASORR[15:0]	0000h
18h	MSW of Local Base Address (Remap) for PCI-to-Local Address Space 0	LAS0BA[31:16]	0000h
1Ah	LSW of Local Base Address (Remap) for PCI-to-Local Address Space 0	LAS0BA[15:0]	0001h
1Ch	MSW of Mode/DMA Arbitration Register	MARBR[31:16]	0100h
1Eh	LSW of Mode/DMA Arbitration Register	MARBR[15:0]	0000h
20h	MSW of EPROM write Protected Area	PROT_AREA [15:0]	0030h
22h	LSW of Local Miscellaneous Control Register / LSW of Local Bus Big/Little Endian Descriptor Register	LMISC[7:0] / BIGEND[7:0]	0500h
24h	MSW of Range for PCI-to-Local Expansion ROM	EROMRR[31:16]	0000h
26h	LSW of Range for PCI-to-Local Expansion ROM	EROMRR[15:0]	0000h
28h	MSW of Local Base Address (Remap) for PCI-to-Local Expansion ROM	EROMBA[31:16]	0000h
2Ah	LSW of Local Base Address (Remap) for PCI-to-Local Expansion ROM	EROMBA[15:0]	0000h
2Ch	MSW of Bus Region Descriptors for PCI-to-Local Bus Accesses	LBRD0[31:16]	4200h
2Eh	LSW of Bus Region Descriptors for PCI-to-Local Bus Accesses (including local bus width - 32)	LBRD0[15:0]	0043h

VORTEX CHIPSET

REFERENCE DESIGN PMC-1990815

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

SEEP Offset	Description	PLX 9054 Register Bits Affected	Setting
30h	MSW of Range for Direct Master-to-PCI	DMRR[31:16]	0000h
32h	LSW of Range for Direct Master-to-PCI	DMRR[15:0]	0000h
34h	MSW of Local Base Address for Direct Master-to-PCI Memory	DMLBAM[31:16]	0000h
36h	LSW of Local Base Address for Direct Master-to-PCI Memory	DMLBAM[15:0]	0000h
38h	MSW of Local Bus Address for Direct Master-to-PCI I/O Configuration	DMLBAI[31:16]	0000h
3Ah	LSW of Local Bus Address for Direct Master-to-PCI I/O Configuration	DMLBAI[15:0]	0000h
3Ch	MSW of PCI Base Address (Remap) for Direct Master-to- PCI	DMPBAM[31:16]	0000h
3Eh	LSW of PCI Base Address (Remap) for Direct Master-to- PCI	DMPBAM[15:0]	0000h
40h	MSW of PCI Configuration Address register for Direct Master-to PCI I/O Configuration	DMCFGA[31:16]	0000h
42h	LSW of PCI Configuration Address register for Direct Master-to PCI I/O Configuration	DMCFGA[15:0]	0000h
44h	Subsystem ID	PCISID[15:0]	2350h
46h	Subsystem Vendor ID	PCISVID[15:0]	11F8h
48h	MSW of Range for PCI to Local Address Space 1	LAS1RR[31:16]	FFFEh
4Ah	LSW of Range for PCI to Local Address Space 1	LAS1RR[15:0]	0000h
4Ch	MSW of Local Base Address (Remap) for PCI-to-Local Address Space 1	LAS1BA[31:16]	0000h
4Eh	LSW of Local Base Address (Remap) for PCI-to-Local Address Space 1	LAS1BA[15:0]	0000h
50h	MSW of Bus Region Descriptors (Space 1) for PCI –to- Local Accesses	LBRD1[31:16]	0000h
52h	LSW of Bus Region Descriptors (Space 1) for PCI –to- Local Accesses	LBRD1[15:0]	0040h
54h	MSW of Hot Swap Control	Reserved	0000h
56h	LSW of Hot Swap Control / Hot Swap Next Capability Pointer	HS_NEXT[7:0] / HS_CNTL[7:0]	4C00h
58h – 100h	Blank	-	FFFFh

43

REFERENCE DESIGN PMC-1990815

VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

An example of the source code for the SEEP. (NM93CS66) is shown below. The bold characters are entries from the above table. The fields 58h to 100h are not highlighted to make it easily readable (those fields are all FFFFh).

:02000020000FC
:1000000905410B5060000000000000000000000000000000000
:1000100000000000000000000000000000000
:10002000 0030050000000000000000042000043 16
:10003000000000000000000000000000000000
:10004000000000235011F800000000000000000000
:10005000000000000000000000FFFFFFFFFFFFF
:10006000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
:10007000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
:10008000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
:10009000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
:1000A000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
:1000B000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
:1000C000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
:1000D000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
:1000E000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
:1000F000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
:10010000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
:10011000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
:10012000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
:10013000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
:10014000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
:10015000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
:10016000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
:10017000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
:10018000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
:10019000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
:1001A000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
:1001B000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
:1001C000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
:1001D000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
:1001E000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
:1001F000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
:0000001FF

8.8. CPLD

The CPLD is used for address decoding and load balancing on the local bus, 8 kHz clock routing, LED control latches, and interrupt logic. The interrupts from each device can be presented to the host CPU on a single read cycle, speeding up interrupt servicing.

DSLAM REFERENCE DESIGN: CORE CARD

8.8.1. Local Bus Memory Map

TABLE 4 shows the local bus memory map.

TABLE 4.Local Bus Memory Map

ISSUE 4

ADDRESS [160]	Description	
0x00000 – 0x00A00	S/UNI-APEX registers	
0x04000 – 0x04008	CPLD registers for interrupts, LEDs and 8 kHz routing (offset 0x4000)	
0x08000 – 0x0A000	S/UNI-ATLAS registers (offset 0x8000)	
0x0C000 - 0x0C804	S/UNI-VORTEX-1 registers (offset 0xC000)	
0x10000 – 0x10804	S/UNI-VORTEX-2 registers (offset 0x10000)	
0x14000 - 0x1420C	S/UNI-DUPLEX registers (offset 0x14000)	

Address range for the S/UNI-APEX is 0xA00 as per datasheets. Multiplying register numbers by 4 and adding offset derives address range for all other devices. The address range per each device is the highest specified in the corresponding data sheets for the present chip revisions.

Example: S/UNI-VORTEX highest register 0x201 * 4 = 0x804, with offset \rightarrow 0xC804;

S/UNI-ATLAS, highest register 0x800 * 4 = 0x2000, with offset \rightarrow 0xA000.

DSLAM software driver prevents accessing address that is higher than specified in the data sheets per each chip.

Chip select is done with the PCI9054 address LA[16..14], which are bundled with a couple of more bits into LA_SEL<4:0> (as shown on the schematic on page 12). For the above devices, the address ports (registers address) on the devices are wired to the address bus using bits LA<13..2> (directly or through the CPLD). The two least significant bits are ignored, due to a 32-bit long word of four bytes on the address and data bus. Address mapping is necessary to treat all local devices as 32-bit devices on the PCI side. (See section 8.4.) Address to each device is incremented by one bit, with bits LA_SEL[2:0] on the chip address bus.

The CPLD registers 0x04000, 0x4004 and 0x04008 support interrupts, LEDs, and 8 kHz routing. Reprogramming is possible, depending on the designer's needs.

The DSLAM chipset has assigned memory space of up to 0x14FFC (decimal 86012).

DSLAM REFERENCE DESIGN: CORE CARD

8.8.2. CPLD Registers

This section briefly describes CPLD registers. Each register is 16-bit wide.

TABLE 5.Interrupt Register 0x4000

ISSUE 4

Bit	Туре	Function	Default
15	R/W	Reserved	0
14	R/W	Reserved	0
13	R/W	S/UNI-DUPLEX INT Enable	0
12	R/W	S/UNI-VORTEX-2 INT Enable	0
11	R/W	S/UNI-VORTEX-1 INT Enable	0
10	R/W	S/UNI-ATLAS INT Enable	0
9	R/W	S/UNI-APEX INTLO Enable	0
8	R/W	S/UNI-APEX INTHI Enable	0
7	R/W	Reserved	0
6	R/W	Reserved	0
5	R	S/UNI-DUPLEX INT	0
4	R	S/UNI-VORTEX-2 INT	0
3	R	S/UNI-VORTEX-1 INT	0
2	R	S/UNI-ATLAS INT	0
1	R	S/UNI-APEX INTLO	0
0	R	S/UNI-APEX INTHI	0

Bits 8 through 13 can be set to logic 1, enabling the corresponding interrupt. If enabled, then any active interrupt from the VORTEX chipset pulls low the interrupt output pin on the CPLD, which is connected to pin LINTB on the PCI9054. Bits 0 through 5 are set to logic 1 asynchronously by interrupt lines from each device.

NOTE: The CPU sets bits 8-13. The CPLD logic sets bits 0-5 (based on connected VORTEX chipset interrupt lines) allowing a single read from the CPLD to determine device interrupt.

PMC-1990815

REFERENCE DESIGN

VORTEX CHIPSET

DSLAM REFERENCE DESIGN: CORE CARD

ISSUE 4

Example of possible LED assignment is shown in TABLE 6 below.

TABLE 6.LED Register 0x4004

Bit	Туре	Function	Default	Notes	5
15	R/W	Reserved	0		
14	R/W	Reserved	0		
13	R/W	Operating Mode – Status LED (yellow)	0	LED	Status
12	R/W	Reset and microprocessor interface (red)	0	D4	
11	R/W	S/UNI-VORTEX-1 LCD	0		
10	R/W	S/UNI-VORTEX-1 LCD	0	LED	Line 1-8
9	R/W	S/UNI-VORTEX-1 LOS	0	D5	
8	R/W	S/UNI-VORTEX-1 LOS	0		
7	R/W	S/UNI-VORTEX-2 LCD	0		
6	R/W	S/UNI-VORTEX-2 LCD	0	LED D6	Line 9-16
5	R/W	S/UNI-VORTEX-2 LOS	0		
4	R/W	S/UNI-VORTEX-2 LOS	0		
3	R/W	S/UNI-DUPLEX Port-2 LCD	0		
2	R/W	S/UNI-DUPLEX Port-2 LOS	0	LED D7	WAN
1	R/W	S/UNI-DUPLEX Port-1 LCD	0		
0	R/W	S/UNI-DUPLEX Port-1 LOS	0		

Bits 0 through 11 set red LEDs on the front panel for loss of signal (LOS) or loss of cell delineation (LCD) on the corresponding LVDS receivers. Alarms have to be detected by the host processor through interrupts and written to the CPLD register 0x4004. If the Core Card is in operating mode, bit 13 may be written 1/0 at about two times per second. If the Core Card is in stand-by mode, bit 13 may be *1* and *Status* LED is lit steadily. If the Core Card is malfunctioning, bit 13 is *0* and LED is turned off.

NOTE: VORTEX Chipset Driver does not have the alarm LED control implemented. Also, on reset, the internal CPLD programming turns *on* all LEDs to for visual inspection, and later, the software script should turn the LEDs *off*. Check LED behavior for programming.

Designer may program LEDs as needed.

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

Bit	Туре	Function	Default
15	R/W	Reserved	0
14	R/W	Reserved	0
13	R/W	Reserved	0
12	R/W	Reserved	0
11	R/W	Reserved	0
10	R/W	Reserved	0
9	R/W	Reserved	0
8	R/W	Reserved	0
7	R/W	Reserved	0
6	R/W	Reserved	0
5	R/W	Reserved	0
4	R/W	Reserved	0
3	R/W	Reserved	0
2	R/W	Clock to PLL [1]	0
1	R/W	Clock to PLL [0]	0
0	R/W	PLL output to all TX8K	0

TABLE 7.8 kHz Routing Register 0x4008

Bit 0 = 0. All 8 kHz inputs TX8K on S/UNI-VORTEX-1, S/UNI-VORTEX-2, and S/UNI-DUPLEX are fed from the J65 header 8 kHz input. No PLL in the signal path.

Bit 0 = 1. All 8 kHz inputs TX8K on S/UNI-VORTEX-1, S/UNI-VORTEX-2, and S/UNI-DUPLEX are fed from the 8 kHz PLL. The source of the signal to the PLL input is determined with bits 1 and 2.

Bit-1 = 0 and **bit-2 = 0**. Clock to PLL from the S/UNI-DUPLEX pin RX8K **Bit-1 = 1** and **bit-2 = 0**. Clock to PLL from the S/UNI-VORTEX-1 pin RX8K **Bit-1 = 0** and **bit-2 = 1**. Clock to PLL from the S/UNI-VORTEX-2 pin RX8K Bit-1 = 1 and bit-2 = 1, reserved.

The 8 kHz output header J72 is fed with 8 kHz from J65 if Bit0 = 0 or from PLL output if Bit0 = 1.

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

Notes on Register Bits:

- 1. Writing values into unused register bits has no effect. To ensure software compatibility with future versions of the product, unused register bits should be written with logic zero. Reading back unused bits can produce either a logic one or a logic zero, therefore, unused register bits should be masked off by the software when they are read.
- 2. All configuration bits that can be written into can also be read back. This allows the processor that controls the Core Card to determine the programming state of the block.
- 3. Writeable register bits are cleared to logic zero on reset, unless otherwise noted.
- 4. Writing into read-only normal mode register bit locations does not affect the CPLD operation, unless otherwise noted.

8.8.3. Alarms And Interrupts

Interrupts from each device are fed into the CPLD, and are derived by the host processor card through the cPCI bridge INTA# line. The interrupt-causing device can be determined by a single read of the CPLD register instead of five reads from the DSLAM chipset. Alarms can be read directly from devices also.

8.8.4. 8 kHz Channel

Figure 6 shows how the CPLD supports routing of the 8 kHz signal to and from any port.

8.8.5. Address Decoding and Chip Enable

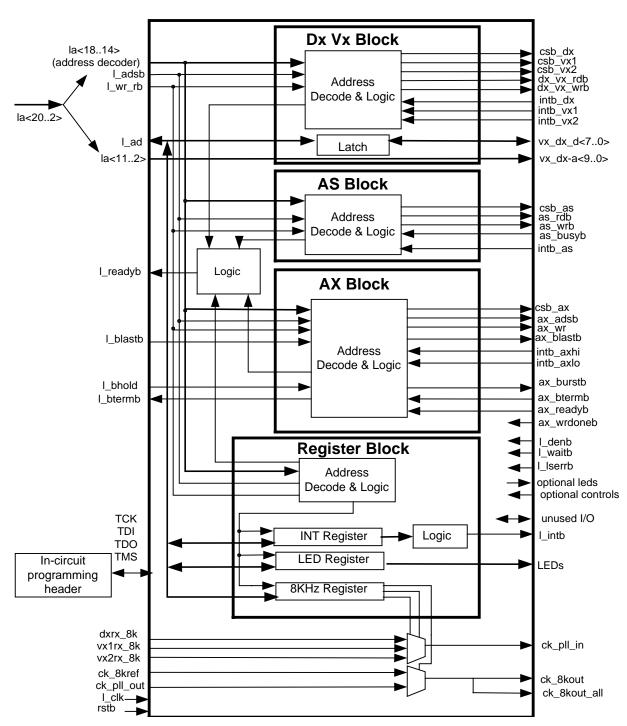
The CPLD supports dynamic (no latching) address decoding and generation of *chip enable* signals. Those signals are routed to each chip individually.

8.8.6. CPLD Type

The CPLD used in this Reference Design is the Xilinx XC95288 with 288 microcells (registers). The data bus width is 32 bits for the S/UNI-APEX, 16 bits for the S/UNI-ATLAS and CPLD, and 8 bits for the S/UNI-VORTEX and S/UNI-DUPLEX. For a preliminary VHDL source code for the CPLD, see Section 0.

PMC-Sierra, Inc.

VORTEX CHIPSET


REFERENCE DESIGN PMC-1990815

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

8.9. CPLD Block Diagram

Figure 17 shows the CPLD block diagram.

Figure 17. CPLD Block Diagram

50

REFERENCE DESIGN PMC-1990815

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

9. CONNECTORS ON CORE CARD

9.1. CPCI Connectors

9.1.1. J1 on Core Card

The J1 connector, that mates with P1 on the 3U high cPCI backplane, provides power to the Core Card. The connector provides the PCI bus interface, which is connected to the PCI9054 bridge.

The J1 connector has to provide the hot-swap capability. The connector senses the staggered pins on insertion and removal of the Core Card from the DSLAM-shelf. The serial MOSFET transistors control the power rails.

Connector J1 follows the pinout recommendation found in documents [18] and [19].

9.1.2. J2, J3, and J4 on Core Card

The J2, J3, and J4, the cPCI-scheme connectors, are not populated on the Core Card.

The J3 connector on a card that is placed into the DSLAM development shelf may collide with a metal rail that runs across the LVDS-backplane.

9.1.3. J5 on Core Card

System Design document [1] shows the J5 pinout.

The J5 connector terminates LVDS from the S/UNI-VORTEX-1 and S/UNI-DUPLEX. Those ports provide an interface to the WAN and Line Cards through the LVDS-backplane.

NOTE: All connectors that mate with the backplane follow the cPCI backplane scheme. The Core Card uses J1 and J5 connectors only. The J2, J3, and J4 names are retired to avoid confusion and to bring uniform connector naming.

9.2. LVDS Interface on the LVDS-backlane

The LVDS interface to the LVDS-backplane is provided through the J5 connector exclusively. The Core Card mates with the custom LVDS-backplane at slot 5 and slot 6.

VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

9.3. LVDS Interface on the Front Panel

The LVDS interface on the front panel is provided through the IEEE 1394 FireWire connectors. Total of eighteen connectors with AC coupling allows access to high-speed ports at S/UNI-VORTEX-1, S/UNI-VORTEX-2 and S/UNI-DUPLEX. See section 10 *LVDS INTERFACE* for more information.

9.4. CPLD Programming Interface on J34

The CPLD programming interface is provided through the J36 header connector. For more information about connections, see the schematics on page 13

Additional Xilinx programming cable with a programming head is required for downloading code into the CPLD. The programming software can be downloaded from the Xilinx web site

WARNING: Take caution while handling cables and maintaining boards. Most interfaces may not have ESD discharge protection.

9.5. 25 MHz Output on J45

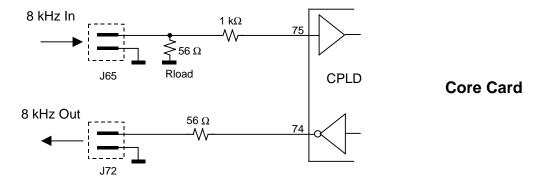
The recovered clock on the high speed LVDS is divided by eight, and it is output at the S/UNI-DUPLEX pin E11 RCLK (at TTL level). The J45 connector is for test purposes only.

9.6. RESET Header J64

The J64 header allows hardware reset to all VORTEX chipset devices (excluding PCI9054). For normal operation a shunt must be placed on pins 1 and 2. When the strap is placed on J64 pins 2 and 3, the RSTB local reset line to is asserted. That also forces HEALTHY# pin *high*.

9.7. 8 kHz Interface on J65 and J72

The 8 kHz interface on the Core Card is accessible on the board only. Header connectors are provided, with J65 for 50 ohm TTL level input and J72 for TTL level output (+3.3 V CMOS logic equivalent). Figure 18 shows the 8 kHz interface Core Card.


VORTEX CHIPSET

REFERENCE DESIGN PMC-1990815

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

Figure 18. 8 kHz Interface

9.8. JTAG Interface on J66

The JTAG interface on the Core Card is accessible on the board through the header connector J66. The JTAG daisy-chain is connected for the VORTEX chipset only. The JTAG interface is provided but not tested. For more information about the connections, see the schematics on page 12.

9.9. Mictor Connectors J70 and J71

The purpose of the J70 and J71 high density Mictor connectors is to allow board troubleshooting and CPLD development. The connectors are optional and may not be populated on all boards.

9.10. Clock Control Header J73

The J73 header must be open for normal operation. This header shuts down 25 MHz local bus clock. Do the strapping with the global reset on J64, while the CPLD is being programmed. Make sure the strap is removed after programming. (The Core Card doesn't misbehave during CPLD programming, even with the local bus 25 MHz clock running and without the RSTB asserted.)

9.11. Optional Reset to CPLD Header J74

The purpose of J74 is disconnecting the optional global reset to CPLD. The header is not populated.

VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

9.12. Ejector Handle Switch Header TP115

Molex header TP115 allows the connection of the ejector micro-switch cable with the board and PCI9054.

The microswitch toggles when the front panel ejector changes position, and notifies the PCI9054 and the host CPU about the status change.

9.13. Miscellaneous Test Points

The Core Card allows the placement of additional headers on multiple test points, that are distributed throughout the board. Those headers may not be populated.

NOTE: the TWRENB line is wrongly labeled as TPRTY. See schematic page 8. The TPRTY is at TP86.

REFERENCE DESIGN PMC-1990815 PMC-Sierra, Inc.

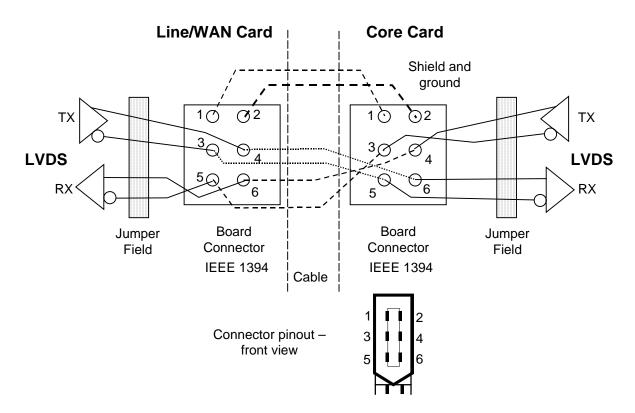
VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

10. LVDS INTERFACE

The connector pinout and interface circuit is briefed in this section.


All connectors that mate with the backplane follow the cPCI backplane population option — J1, J2, J3, J4, and J5. The Core Card uses J1 and J5 connectors only.

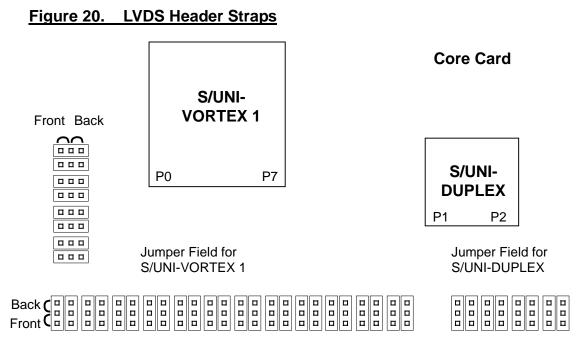
The LVDS interface to the custom LVDS-backplane is provided exclusively through connector J5. The Core Card mates with the custom LVDS-backplane at slot 5 and slot 6.

10.1. LVDS Front Panel Interface

The IEEE 1394 cable is wired with pins swapped on each end. This type of wiring requires matching pinouts on the Core Card and the Line/WAN Card. Figure 19 shows the LVDS connector pinout on the DSLAM cards.

Figure 19. LVDS Pinout on DSLAM Cards

The pinout is functional only. The physical interface has serial capacitors 1.0 uF (or 0.22 uF) on input and output. Inputs are biased with the resistive divider and


VORTEX CHIPSET

DSLAM REFERENCE DESIGN: CORE CARD

line termination. Capacitors are permanently soldered without the bypass option. The Line and WAN Cards have transformer coupling, which can be modified for capacitor coupling through de-soldering only. Jumper fields allow for a front panel or backplane interface.

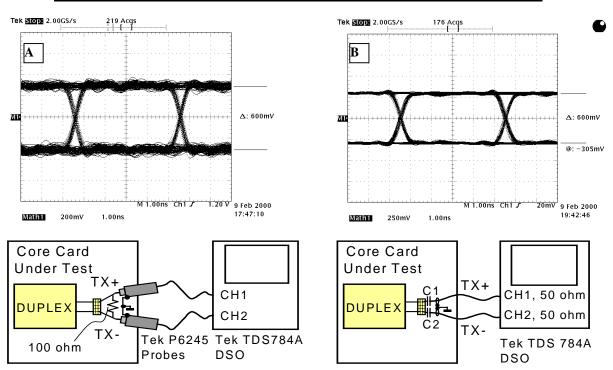
The total count of the LVDS interfaces on the Core Card is eighteen. The total count of connectors occupies the entire front panel, preventing placement of other connectors (like 8 kHz stratum clock). The S/UNI-VORTEX-1 port P[0] through P[7] and S/UNI-DUPLEX port P1 and P2 can be wired to the front panel and to the LVDS-backplane through the *Jumper Field*. The S/UNI-VORTEX-2 port P[0] through P[7] are wired to the front panel only. The LVDS copper lines routing was shown earlier in Figure 5.

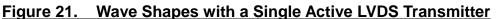
Figure 20 shows the LVDS header straps.

A total of 40 shunts are needed for all LVDS ports. Headers and shunts are on a 2 mm grid.

ESD Protection on LVDS Ports

The LVDS is inherently unprotected for ESD with capacitor coupling on the Core Card interface. The Line and WAN Cards may have transformer coupling that withstand ESD discharge.


Take caution when handling cables and maintaining boards.



ISSUE 4

10.2. LVDS Eye Pattern at Jumper Field Tests

We have investigated LVDS signal integrity, and the results are presented below. The eye pattern on the transmitted LVDS signal is captured with the TEK TDS784 oscilloscope in differential mode. The signal was connected with two setups. The first one used high frequency probes, and the second one used short 50 ohm cables. Figure 21 shows the test results.

Graph A shows S/UNI-DUPLEX LVDS transmitting the waveform at the header connector, measured with high frequency oscilloscope probes. The waveform is terminated with the 100 ohm resistor, and the signal is probed with Tek P6245, <1 pF, 1 Mohm, 1.5 GHz probes.

Graph B shows the waveform obtained by direct connection with 50 ohm coaxial cables into 50 ohm oscilloscope inputs. Serial capacitors must be inserted, because direct termination into 50 ohm to ground overloads the transmitter and corrupts the LVDS signal. Both cases use the differential math function CH1–Ch2.

VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

Signal integrity measured with oscilloscope probes is inappropriate for this application. The signal shows excessive *waves* or back reflections, which may lead to a false conclusion about signal quality. The correct measurement is to terminate the signal directly into the oscilloscope using short coaxial cables and <u>AC coupling</u>.

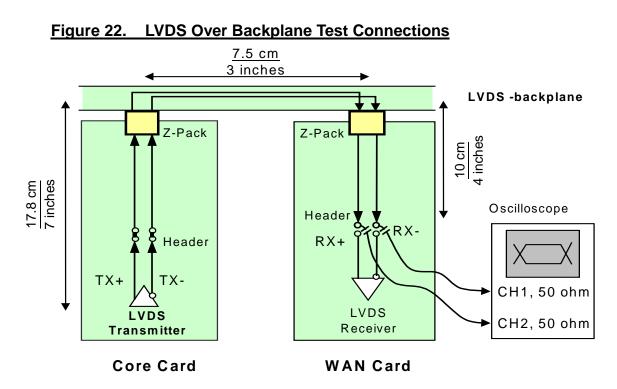
Transmitted data pattern is of random type with very low baseline wander, as needed for signal integrity tests.

The waveforms look different with transformer coupling, as implemented for the Line Card and WAN Card.

10.3. LVDS Eye Pattern over LVDS-Backplane Tests

The LVDS interface to the custom LVDS-backplane is provided exclusively through connector J5. The Core Card mates with the LVDS-backplane at slot 5 and slot 6.

In the LVDS backplane test, the Core Card is placed into the DSLAM test shelf with the LVDS-backplane, and eye pattern is measured at the header on the Core Card and then on the WAN Card. The Core Card is placed at slot 5 and the WAN Card at slot 8. Figure 22 shows the total length of trace, which is about 35.5 cm or 14 inches.



VORTEX CHIPSET

REFERENCE DESIGN PMC-1990815

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

The signal goes through two header connectors and two Z-pack, 2 mm cPCI connectors, before it is connected with a short 50 ohm coaxial cable into the 50 ohm oscilloscope inputs. AC coupling is maintained with serial capacitors. Figure 23 shows eye patterns at the transmitter header and at the receiver header.

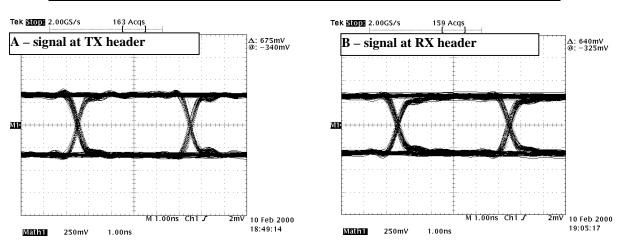


Figure 23. LVDS at Core Card and Line Card with LVDS backplane

The LVDS-backplane attenuates the LVDS signal from 675 mV to 640 mV, which results in 0.5 dB (or 5 %) amplitude attenuation. Some near-edge distortions are

59

REFERENCE DESIGN PMC-1990815

VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

amplified and are more visible after running the signal over the backplane. The overall signal is of a very good quality and allows easy reclocking. A possible reason for back reflections is a small miscalculation of the differential pair impedance. The board was designed with 50 ohm per trace, as it would be a single line. Due to the coupling effect, the virtual impedance of the pair is changed and is not 100 ohm any more. Also, the differential pair goes into two coax cables, creating additional impedance discontinuity. The measurement techniques need further evaluation.

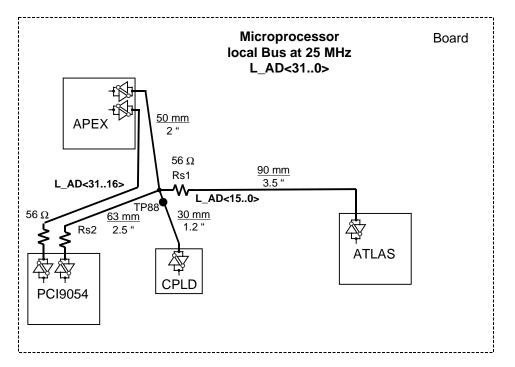
NOTE: Double AC termination on the LVDS path may cause baseline wander if not designed properly. Excessive baseline wander together with long cables may cause bit errors. Designers may investigate solution with AC coupling on one card only, or use large capacitor coupling – about 1 uF. Also, metallic loopback executed for test and troubleshooting is very susceptible to double AC coupling and may cause misleading data corruption. With metallic loopback the LVDS data goes four times through AC coupling aggregating baseline wander problem.

REFERENCE DESIGN PMC-1990815

VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

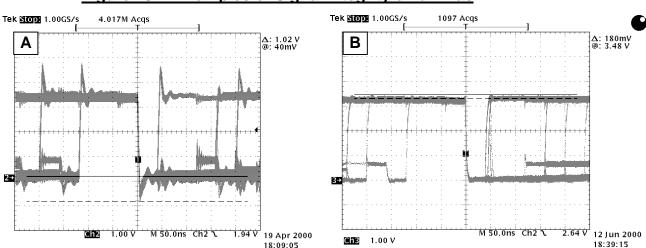

11. BUS TERMINATION EXAMPLES

This section briefly describes the bus termination method on various buses that are present on the Core Card. Proper digital line termination is critical for signal integrity and timing. Termination may prevent data corruption caused by a large signal overshoot. The overshoot may create current flow into silicone and internal silicone crosstalk, which is very difficult to detect. See document [5] for more on signal integrity.

11.1. Microprocessor Bus Termination

Figure 24 shows the local microprocessor bus termination.

Figure 24. Microprocessor Bus Termiantion


The measurements, done on the Core Card board Rev. 1, show a very large overshoot on the signal edges. After reviewing termination options, it was determined that placing the termination resistor, Rs1, at the L_AD<15..0> bus joint towards the longest branch at the S/UNI-ATLAS was optimal. Placement was based on signal integrity simulation and verified through a test. The second resistor, Rs2, was already placed next to the PCI9054 and is optional. The upper half, L_AD<31..16>, connects between PCI9054 and S/UNI-APEX only, and it has the Rs2 termination. The termination Rs1 placement at the central T-joint of

PMC PMC-Sierra, Inc. **VORTEX CHIPSET ISSUE 4** DSLAM REFERENCE DESIGN: CORE CARD

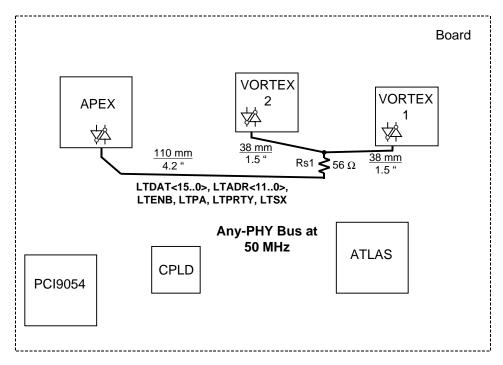
the bus is due to the bi-directional nature of the bus, where any device can drive the digital line.

Figure 25 shows examples of the bus signal.

Examples of Signal Integrity on uP Bus Figure 25.

Figure A shows the bus signal without termination resistors. Figure B shows the bus signal, L AD<0>, measured on TP88 with the termination resistors distributed as presented in Figure 24 earlier. Signal overshoot reaches over one volt on both the positive and negative edges on the non-terminated bus. Serial termination resistors completely eliminate the overshoot.

It is strongly recommend to have proper termination resistors on the microprocessor bus. It is common practice to terminate the Utopia, Scy-PHY, and RAM buses and to leave the microprocessor bus non-terminated. Usually, the microprocessor bus is physically the largest one on the board, reaching throughout all major components on the PCB. With edges in the nanosecond range, back reflections can reach well above clamping diode range, causing the uncontrolled current flow into silicone. We observed in our lab that a significant overshoot causes data corruption that was very difficult to troubleshoot. In the worst case scenario, board redesign with serial termination resistors, is the only solution.


DSLAM REFERENCE DESIGN: CORE CARD

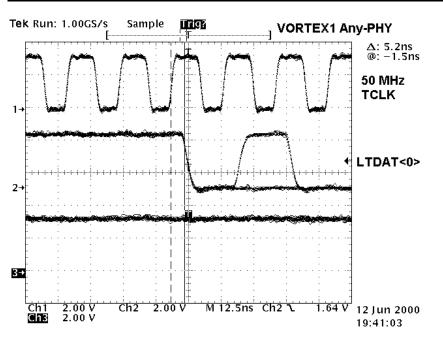
11.2. Downstream Any-PHY Bus Termination

Figure 26 shows the Any-PHY bus termination.

ISSUE 4

Figure 26. Any-PHY Bus Termiantion

Signal simulation, done prior to the board layout, helped to find the best position for the termination resistor. Simulation pointed to T-joint as the optimal placement for the resistor. Both directions of data flow have the same T-joint termination placement.


Figure 27 (below) shows an example of signal integrity on LTDAT<0> at the S/UNI-VORTEX-1.

REFERENCE DESIGN PMC-1990815

VORTEX CHIPSET

DSLAM REFERENCE DESIGN: CORE CARD

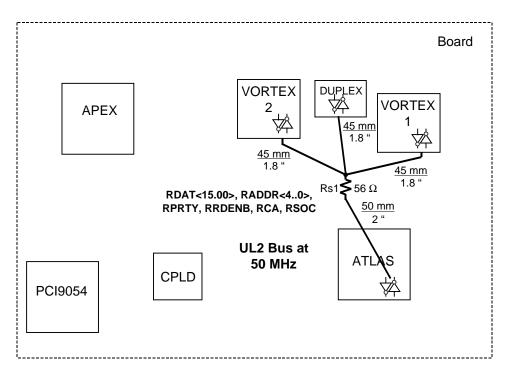
ISSUE 4

Figure 27. Example of Signal Integrity Downstream at VORTEX-1

The timing shows about 5.2 ns margin on hold time, while writing data to the S/UNI-VORTEX-1 on Any-PHY bus.

11.3. Upstream/Downstream UL2 Bus Termination

Figure 28 shows the upstream/downstream UL2 bus termination with the S/UNI-VORTEX1, S/UNI-VORETEX2, S/UNI-DUPLEX, and S/UNI-ATLAS.


VORTEX CHIPSET

REFERENCE DESIGN PMC-1990815

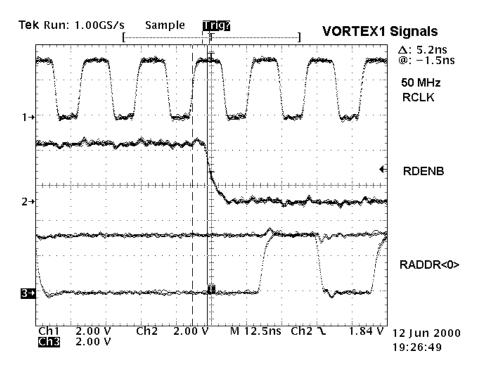
ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

The signal simulation shows T-joint as the optimal placement for the serial termination resistor. The simulation was done before board layout. Both directions of the data flow have the same T-joint termination placement. The best solution for the split trace length is to keep it symmetrical. In this case, the branches are at about 45 mm (or 1.8 inch) each.

Figure 29 shows an example of signal integrity on LTDAT<0> at the S/UNI-VORTEX-1.

65


PMC PMC-Sierra, Inc.

VORTEX CHIPSET

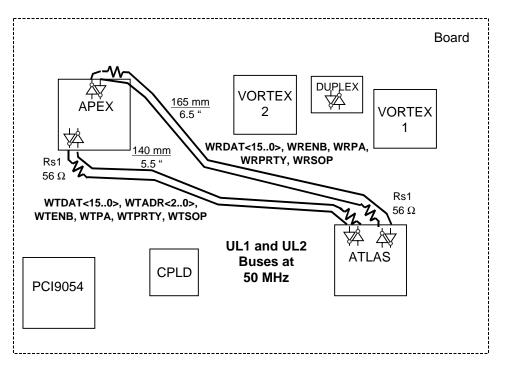
ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

The timing shows about 5.2 ns margin on hold time on RDENB. Also, the appropriate timing margin exists on the RADDR<0>. This is the SCY-Phy/UL2 bus at the S/UNI-VORTEX-1.

11.4. S/UNI-APEX – S/UNI-ATLAS Bus Termination

Figure 30 shows the UL1 and UL2 buses, between the S/UNI-ATLAS and S/UNI-APEX, that are terminated with serial resistors.


VORTEX CHIPSET

REFERENCE DESIGN PMC-1990815

ISSUE 4

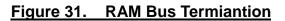
DSLAM REFERENCE DESIGN: CORE CARD

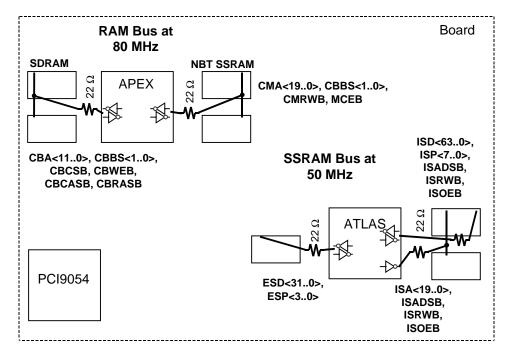
Figure 30. S/UNI-APEX – S/UNI-ATLAS Bus Termiantion

The signal simulation shows the best placement near the source of the digital signal. The simulation was done before board layout.

11.5. RAM Bus Termination

Figure 31 shows an example of the S/UNI-APEX and S/UNI-ATLAS RAM bus termination.




VORTEX CHIPSET

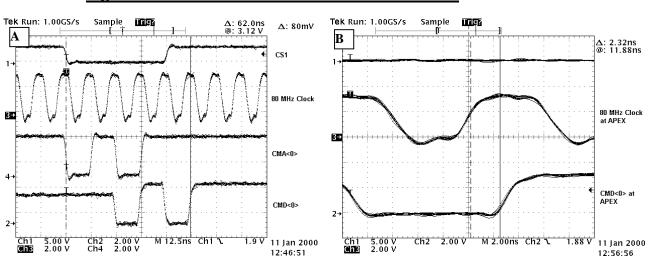
REFERENCE DESIGN PMC-1990815

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

Due to space limitations, the termination resistors are placed at the layout convenience and may not be at the best termination position. Typically, address lines and control lines connected to more than two inputs are placed with termination resistor near the signal source. The S/UNI-ATLAS has serial resistors at the data lines ESD<31..0>, ESP<3..0>, ISD<63..0>, and ISP<7..0> that connect point-to-point only, due to observed overshoots on the data edges.

The following pages provide examples of the RAM bus signal captured with a digital oscilloscope.


Figure 32 shows the waveforms at the S/UNI-APEX and the NBT SSRAM.

REFERENCE DESIGN PMC-1990815

VORTEX CHIPSET

DSLAM REFERENCE DESIGN: CORE CARD

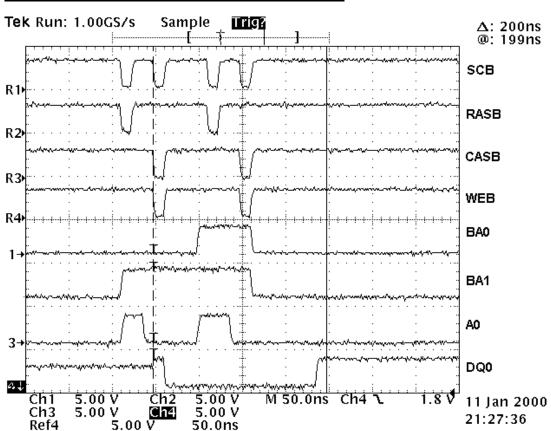
Figure 32. Waveforms at S/UNI-APEX at 80 MHz

ISSUE 4

Graphs A and B show curves that are derived through accumulation of ten consecutive reads from the ZBT SSRAM. The signal integrity is appropriate for this interface. The timing margin, shown in graphB, at about 2.3 ns leaves plenty of room for 0.7 ns hold time specified in the S/UNI-APEX data sheets.

Some room on the signal integrity improvement exists on clock waveforms. Other type of buffer and termination resistors may help reduce the overshoot.

Figure 33 shows the waveforms at the S/UNI-APEX and the SDRAM.


REFERENCE DESIGN PMC-1990815

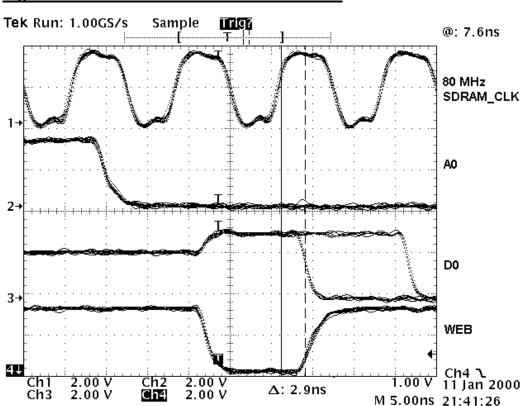
VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

Figure 33. Waveforms at SDRAM at 80 MHz

The trace descriptions (next to the right edge of the graph above) apply to the SDRAM pinout shown on the Core Card SDRAM schematics. The clock signal is not shown in the above figure. The oscilloscope captured digital signals show 16 consecutive write cycles to the SDRAM executed by the S/UNI-APEX. The DQ0 trace between 200 ns cursors shows the binary data pattern 10000000000001 written to the SDRAM.


Figure 34 shows the zoomed pattern with clock and timing margins and also shows the waveforms at the S/UNI-APEX and the SDRAM.

REFERENCE DESIGN PMC-1990815

VORTEX CHIPSET

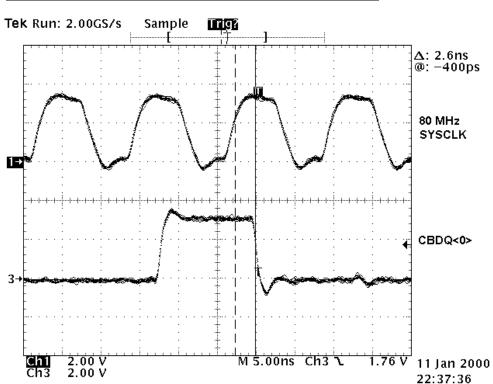
ISSUE 4

Figure 34. Waveforms at SDRAM at 80 MHz

The digital lines shown above are:

- A0 address to SDRAM
- D0 data to SDRAM
- WEB write enable to SDRAM.

The oscilloscope is triggered with the WEB signal. The timing shows about a 2.9 ns margin that is enough for the 1.0 ns hold time for the 100 MHz SDRAM (as specified in the Micron[™] data sheets).


Figure 35 shows the data flowing from the SDRAM to the S/UNI-APEX.

REFERENCE DESIGN PMC-1990815

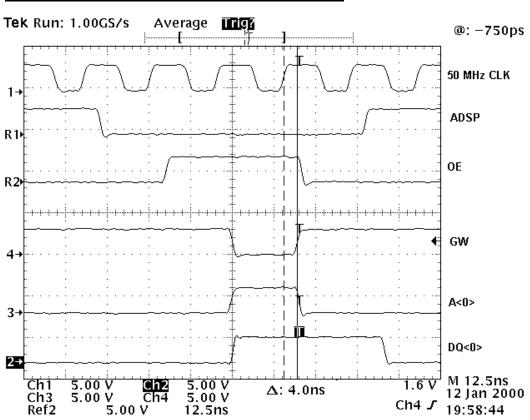
VORTEX CHIPSET

DSLAM REFERENCE DESIGN: CORE CARD

Figure 35. Waveforms at S/UNI-APEX at 80 MHz

ISSUE 4

The digital line, CBDQ<0>, is the data at the S/UNI-APEX coming from the SDRAM. The clock at the S/UNI-APEX pin SYSCLK is about 2.6 ns ahead of the data, leaving enough margin, with a 0.7 ns hold time specified in the S/UNI-APEX data sheets.


Figure 36 shows the write to SSRAM (from the S/UNI-ATLAS). The interface runs at 50 MHz.

REFERENCE DESIGN PMC-1990815

VORTEX CHIPSET

DSLAM REFERENCE DESIGN: CORE CARD

Figure 36. Waveforms at SSRAM at 50 MHz

ISSUE 4

The figure shows digital signals captured during a single write to SSRAM, executed by the S/UNI-ATLAS. The signal integrity is appropriate for this interface. The timing margin at SSRAM is about 4.0 ns, which leaves plenty of room for the 0.5 ns hold time specified in the SSRAM data sheets.

PMC-Sierra, Inc.

VORTEX CHIPSET

ISSUE 4

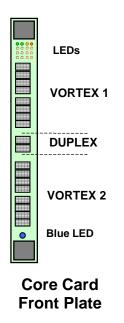
DSLAM REFERENCE DESIGN: CORE CARD

12. HARDWARE

This section briefly introduces some hardware issues related to the Core Card.

12.1. Card Form

The Core Card form factor complies with the PICMG 2.0 Revision 2.1 CompactPCI standard described in document [18].


The Core Card form factor complies with the *Hot Swap Specification*, PICMG 2.1 Revision 1.0 standard, described in document [19].

12.2. Front Plate on Core Card

The front plates on the Core Card have dimensions specified in the cPCI document [18].

Figure 37 shows an example of the Core Card front plate.

Figure 37. Front Plate for Core Card

The Core Card is equipped with 18 IEEE 1394 connectors. The top eight connectors support the S/UNI-VORTEX-1 LVDS. The center pair supports the S/UNI-DUPLEX LVDS. The lower eight connectors support the S/UNI-VORTEX-2 LVDS.

VORTEX CHIPSET

DSLAM REFERENCE DESIGN: CORE CARD

The top four rows of the LEDs show the basic status of the Core Card. The blue LED supports software action when the card is inserted and removed.

The aluminum front plates are labeled with silkscreen. Labels identify the connectors, LEDs, card type, and manufacturer (PMC-Sierra, Inc.).

12.3. LEDs On the Front Plate

The DSLAM Cards are equipped with a set of LEDs. The basic set of four LEDs provides visual information about power lines and the basic condition of the microprocessor interface to all components. The basic LEDs are:

- +5 V, green indicates a presence of +5 V
- +3.3 V, green indicates a presence of +3.3 V
- uP, red may not be implemented in the Chipset Driver applications routines. The preferred functionality is that ON indicates trouble at the uP (power-up boot).
- Status, yellow is not implemented in Chipset Driver. The preferred functionality is that *flashing* indicates an operating Core Card, *steady* indicates a hot stand-by Core Card, and *turned off* indicates a malfunctioning Core Card. The LED flashes two times per second.

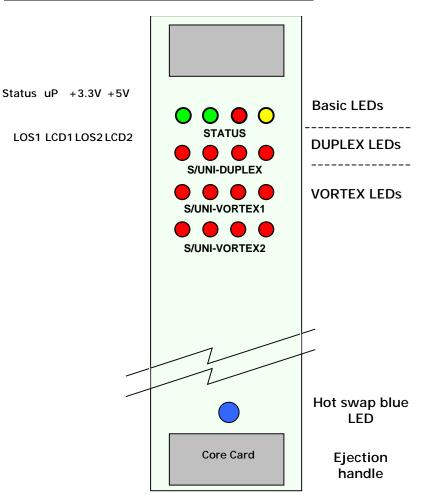
The preferred functionality for additional red LEDs is not implemented in the Chipset Driver. The LEDs are intended to indicate a loss of signal (LOS) and a loss of cell delineation (LCD) on the S/UNI-DUPLEX (from the WAN Card) interface. Possible alarms are described as:

- LOS1, red loss of signal at the S/UNI-DUPLEX LVDS RXD1 Port[1]
- LCD1, red loss of cell delineation at the S/UNI-DUPLEX LVDS RXD1 Port[1]
- LOS2, red loss of signal at the S/UNI-DUPLEX LVDS RXD2 Port[2]
- LCD2, red loss of cell delineation at the LVDS RXD2 S/UNI-DUPLEX Port[2]

The preferred functionality for LEDs in the next two rows is showing the status of the LVDS on both the S/UNI-VORTEX-1 and the S/UNI-VORTEX-2.

The cPCI specification requires that the blue LED associated with the lower extraction handle be placed next to the handle at the very bottom of the front plate.

Figure 38 shows an example of the LED placement on the front plate.


REFERENCE DESIGN PMC-1990815

VORTEX CHIPSET

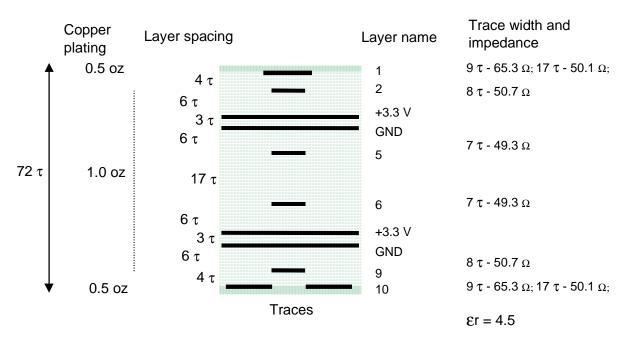
ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

Figure 38. Example of LEDs Placement

Two green LEDs, used for supply voltages +5 V and +3.3 V, should not be used as an indicator for accurate voltage level. All other LEDs are controlled with the CPLD and are entirely dependent on the software driver.

The blue LED is also software controlled, with the exception of the reset on the host CPU card. The PCI reset turns the LED *ON* using the PCI9054. The blue LED indicates that the card is not operable when it is inserted or removed from the DSLAM shelf.


PMC-1990815

DSLAM REFERENCE DESIGN: CORE CARD

12.4. Printed Circuit Board Stack

The board is laid out with 10-layer copper stack. Figure 39 shows an example of the cross-section.

Figure 39. PCB Cross-section

ISSUE 4

The ground and power planes are placed at 0.003-inch spacing. This spacing allows for high capacitance (with low parasitic inductance) between the planes, and to create the best filtering of high frequency power rail noise.

The +5.0 V and +2.5 V rails are isolated islands, cut out from the +3.3 V copper plane (not shown above).

The critical traces for 50 ohm LVDS differential pairs and 65 ohm PCI interface are shown in the most right column. The 50 ohm traces are at 7 to 17 τ wide, depending on the layer. The 65 ohm PCI interface is laid out only on two external layers. The digital lines are done at about 60 ohms with 5 τ wide traces on inner layers.

VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

12.5. Key Coding on the J1 Connector

Connector J1 on the Core Card provides the option for keying, which prevents card insertion into an unknown shelf. The Reference Design Core Card is shipped without the key. The Core Card can operate with VI/O at +5 V or at +3.3 V.

The cPCI rule-of-the-thumb is to not plug the cPCI card into an unknown shelf!

12.6. Power Supply Specification

This section briefly describes some issues related to power supply.

12.6.1. Core Card

The Core Card requires a +5 V and 3.3 V supply, fed through cPCI connector J1.

Power required for each chip can be estimated using the VORTEX chipset data sheet. The result, though, may be an exaggerated power dissipation, not exactly correlated to measurement in the real system.

The total current to the Core Card (board Rev. 3) at +3.3 V rail is about 2.9 A, with traffic at about 40 kcell/s at the S/UNI-ATLAS Ingress input. The safety factor of 40 % brings the current to 4.1 A. The higher safety margin is due to some current changes with supply rail variation.

The total current at 5 V rail is about 0.6 A. That current includes the S/UNI-APEX core current at 2.5 V rail. The safety factor of 40 % brings the current to 0.84 A.

Total power dissipation on the Core Card, Issue 3, is estimated at P = (5.25 V * 0.84 A) + (3.6 V * 4.1 A) = 19.2 W.

The Core Card requires a forced airflow cooling system in enclosed shelves. While the Core Card (board Rev. 3) was tested in an open development shelf, no excessive overheating was observed.

The Core Card operates when it is powered with a standard switching power supply found throughout the PC industry.

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

12.6.2. S/UNI-DUPLEX and S/UNI-VORTEX

The S/UNI-DUPLEX and S/UNI-VORTEX devices need only a single RC filtering element on the CAVD, CAVD0, and CAVD1. The schematic shows zero ohm resistors on other supply rails. Board can be laid out with those rails shorted directly to +3.3 V rail.

PMC-Sierra, Inc.

VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

13. SOFTWARE

13.1. System Processor Requirement

The Core Card must be accompanied with a card on the same cPCI shelf. The host processor provides a power-up setup for the DSLAM chipset. The host processor controls operation, alarms and maintenance of the Core Card.

13.2. DSLAM Operating System

The DSLAM Reference Design Core Card is run with a software ported on a host processor card with the VxWorks operating system (OS). This is a real-time OS (RTOS). The device drivers for individual chips are also best portable on a platform with the VxWorks.

13.3. Device Drivers

PMC-Sierra, Inc. provides, on request, drivers for each DSLAM chipset device that is mounted on the Core Card.

PMC-Sierra, Inc. provides, on request, the VORTEX Chipset Driver (board level driver, or metadriver) for the VORTEX chipset that is mounted on the Core Card.

13.4. Example of VORTEX Chipset Setup

The following is an example of a possible VORTEX chipset setup sequence on power-up (or reset), executed by the software. This is only an example sequence. For updates to the software drivers, refer to the PMC-Sierra web site regularly.

13.4.1. APEX Setup

- Reset chip.
- Wait for the DLL to run.
- Do a zero out of all memory apertures.
- Set up the configuration registers.
- Set up the cell buffer free list.
- Set up the shaper.
- Set up the port.
- Set up the class.
- Set up the connection.
- Enable the interrupts.
- Enable the queue engine.

REFERENCE DESIGN PMC-1990815

DSLAM REFERENCE DESIGN: CORE CARD

13.4.2. APEX Operations

- Receive or send cells or frames through the SAR interface.
- Perform a watchdog patrol on FCQ VCs.
- Set up or tear down ports, classes, and connections dynamically.

13.4.3. DUPLEX and VORTEX Setup

ISSUE 4

- Reset the chip.
- Set S/UNI-DUPLEX OCAEN in register 0x0A to 0 (zero). Keep at low through whole initialisation process.
- Set up the configuration registers.
- Set up the Logical Channel Base Address and Address Range in VORTEX chips.
- Set up the Control Channel Base Address in VORTEX chips.
- Enable the HSS links that are connected to the Line Cards or WAN Cards.
- Enable polling on S/UNI-ATLAS.
- Set S/UNI-DUPLEX OCAEN to 1 (one).
- Enable the interrupts, as needed.

IMPORTANT NOTE:

The S/UNI-DUPLEX requires OCAEN bit in register 0x0A to be activated as the very last write, after polling on the S/UNI-ATLAS is enabled. The VORTEX Chipset Driver files vcs_api1.c and dpx.c take care for proper sequencing. Software designers are required to observe sequencing in their drivers.

13.4.4. DUPLEX And VORTEX Operation

• Receive or send cell or messages through its microprocessor port.

13.4.5. ATLAS Setup

- Reset the chip.
- Initialise VC tables, and zero out the SSRAM memory.
- Set up the configuration registers.
- Set up VC connections including the search tree in the Ingress VC Table.
- Set up and enable OAM support.
- Set up PM sessions, if preferred.
- Set up F4 to F5 processing, if preferred.
- Enable the interrupts.
- Enable VCs.

REFERENCE DESIGN PMC-1990815

DSLAM REFERENCE DESIGN: CORE CARD

13.4.6. ATLAS Operations

- Receive or send cells or frames through its microprocessor interface. You can use the interface for OAM support.
- Set up or tear down the connections dynamically. The search tree is updated dynamically too.
- Enable or disable the connections dynamically.
- Read out the PM record for performance monitoring, if preferred.

13.4.7. Important Notes For Chipset Level Setup

ISSUE 4

- Make sure the bus interface configuration for the APEX, ATLAS, VORTEX, DUPLEX devices are compatible, and the devices send or transmit cells of the same protocol. (Prepend and H5/UDF bytes be consistent.)
- Suggest using the same connection ID number for both the APEX and ATLAS VC table index. This simplifies VC management.
- Suggest using the following algorithm to map the loop port address space:
 - LoopId[11:0] = VtxId[11:8] | HssLnkId[7:5] | xdsIPhyId[4:0].
 - the logical channel base address and range in VORTEX devices should be configured appropriately, based on the above loop port mapping algorithm.
- Suggest using the following search key in ATLAS:
 - Primary Key = 5 bits PHY ID + 9 bits Field A (embedded address in 9 H5/UDF LSB bits)
 - Secondary Key = 28 bits of VPI/VCI. No field B.

13.5. Firmware

The Core Card has firmware stored in a serial EEPROM that supports the PCI bridge. This device is an 8-pin DIP that is externally programmable and is placed into a socket.

13.6. Programmable Logic Devices

The Core Card has a single, in-circuit, programmable CPLD that is permanently assembled (soldered).

13.7. System Control

The Core Card provides limited functionality for the system control. The CPU processor can execute a global reset on the WAN Card or Line Card through the

REFERENCE DESIGN PMC-1990815

VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

Core Card. This can be done with the S/UNI DUPLEX-DUPLEX or VORTEX-DUPLEX LVDS links through the BOC (bit oriented code).

The Inband Communication Channel (ICC) allows building custom communication channel between the two DSLAM entities, and in turn, the whole DSLAM system can be in-system reprogrammed and controlled from a single processing center. It is assumed that the microprocessor entities on both sides of the connection are running a reliable communications protocol. This has not been implemented in VORTEX Chipset Driver.

VORTEX CHIPSET

DSLAM REFERENCE DESIGN: CORE CARD

14. APPENDIX A: TESTS EXAMPLE UTILIZING CORE CARD DRIVER

14.1. Register and RAM Test with VORTEX Chipset Driver

ISSUE 4

Description:	This test uses the VORTEX Chipset Driver functionality and a special test program written in C, creating a primitive text line interface that accesses the Core Card entities. The primary function of this test is to verify the registers on all VORTEX chipset devices and the external RAM on the S/UNI-ATLAS and S/UNI-APEX. The test also verifies (indirectly) the microprocessor interface. The register test derives the expected type and ID bits from the register 0x00 on all VORTEX chipset devices. The RAM test writes, reads, and compares data patterns.
Stimulus:	Boot the DSLAM shelf with the Core Card from a boot disk and server software. Run the test software routines that use API and metadriver. Type the command names to invoke the test routines from Tcl consloe window (or from a dumb terminal). The Core Card must be in a specific state to run the RAM test, that is, the RAMs are not activated and no traffic is allowed during the RAM test.
Expected Results:	The test software reports no errors.
Actual Results:	Register Test. The register test passed on all boards.
	RAM Test. The initial RAM test provided by the software group passed the S/UNI-ATLAS RAM test. It was later found that the Ingress RAM interface reported a parity error with the traffic test. Investigation on the S/UNI-ATLAS RAM interface showed that the test pattern and read/write sequence was inappropriate. If the RAM is written and read immediately after, it may read correct values even if the RAM chip is removed from the board. This is due to the S/UNI- ATLAS data drivers indefinitely holding the last written word. The data bus has no pull down/up resistors and the read data may be exactly as the write one. The solution is to write fifteen rows of complimentary hex pattern words (64-bit) to the whole VC Table RAM and then read it. An example of a pattern is shown below.

REFERENCE DESIGN PMC-1990815

VORTEX CHIPSET

DSLAM REFERENCE DESIGN: CORE CARD

. . . .

ISSUE 4

It is very important to make sure the last word written is complimentary (different) from the first word read. Other patterns can be (hex) C0C0C0... and 030303.... A walking "1" may not find the problem if the read and write follow each other.

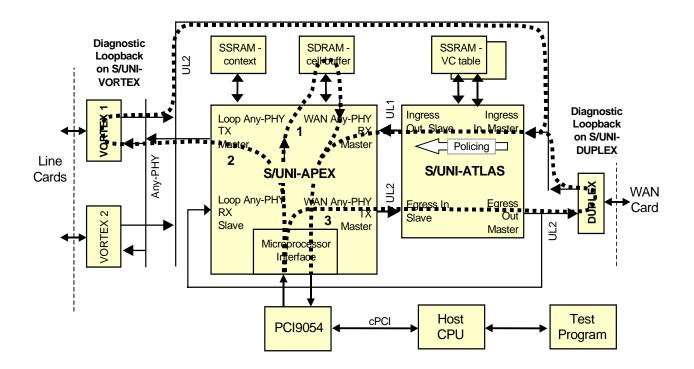
The improved test and sequence pattern was run again, and a cold solder was found on one of the Ingress RAM leads.

14.2. Cell Data Path with Internal Loopback Test

The tests described in this section verify the cell data paths through the Core Card. This is one of the very first data path tests applied to the Core Card on test shelf. The test is very useful to help troubleshoot and verify the basic functionality of the Core Card.

The test is executed with test routines written in C. The tests are invoked with Tcl environment through a serial port from the external PC or from a dumb terminal that is connected directly to the host processor card running VxWorks and communicating to the Core Card. The Motorola CPV500 SBC host processor card was used throughout software and hardware development and the test.

The cell is generated with the S/UNI-APEX microprocessor interface and received at the same interface. Figure 40 shows the cell path.



VORTEX CHIPSET

REFERENCE DESIGN PMC-1990815

DSLAM REFERENCE DESIGN: CORE CARD

Figure 40. Data Path with Internal Loopback

The cell is always stored in the external Cell Buffer RAM (SDRAM), and then directed to the appropriate port. The test routine allows passing cells on three paths:

- 1. Microprocessor-to-microprocessor at the S/UNI-APEX only, on path 1. This path is useful for troubleshooting the RAM interface on the S/UNI-APEX.
- 2. Loopback at the S/UNI-VORTEX 1 or 2 on path 2. The cell tests Any-Phy interface from the S/UNI-APEX to the S/UNI-VORTEX. At the S/UNI_VORTEX, the cell is looped with the Diagnostic Loopback on a chosen high-speed link. The cell travels on the Utopia Level 2 / SCI-PHY bus upstream to the Ingress Input on the S/UNI-ATLAS, and finally on the Utopia Level 1 bus to the S/UNI-APEX. The cell is directed to the microprocessor buffer at the S/UNI-APEX.
- 3. Loopback at the S/UNI-DUPLEX on path 3. The cell tests the Utopia Level 2 bus upstream from the S/UNI-APEX to the S/UNI-ATLAS. Then the cell travels on the Utopia Level 2 bus to the S/UNI-DUPLEX. At the S/UNI-DUPLEX, the cell is looped with the Diagnostic Loopback on one of two high-speed links. The cell travels downstream to the S/UNI-ATLAS (same interface as the cell on path 2) and finally reaches back to the S/UNI-APEX. The cell is directed to the microprocessor buffer at the S/UNI-APEX.

VORTEX CHIPSET

REFERENCE DESIGN PMC-1990815

DSLAM REFERENCE DESIGN: CORE CARD

14.3. External Loopback Test

14.3.1. Sub Test 1: Downstream/Upstream on Sixteen Channels.

ISSUE 4

Description: The test was designed to use the PM1555A ATM over the DS-3 tester. A cell generated with the PM1555A tester travels 32 times through the S/UNI-ATLAS Ingress Input, observed with oscilloscope at the RRDENB line. Each round cell has the VPI/VCI header remapped with the S/UNI-ATLAS, so it can be sent by the S/UNI-APEX to the appropriate port. The cell goes sixteen times through Loop Tx and sixteen times through the WAN Tx ports. Figure 41 shows the block diagram depicting the test setup.

Figure 41. External Loopback with ATM over DS-3 Tester

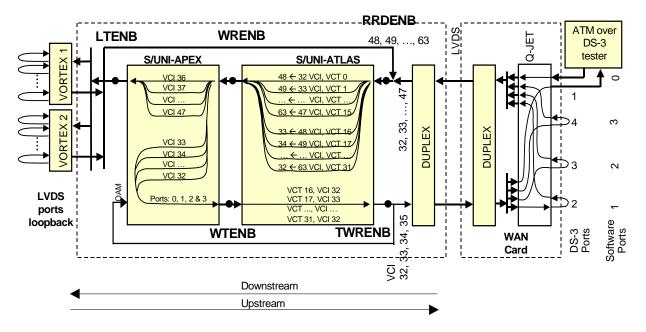


TABLE 8 shows the parameters from an automatic test that sets sixteen connections in each direction (total of 32).

PMC-Sierra, Inc.

VORTEX CHIPSET

REFERENCE DESIGN PMC-1990815

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

Inp	ut Port Type	Port #1	VPI	VCI	Inp	ut Port Type	Port #2	VPI	VCI	Table #
	VCS_WAN_PORT	0	100	32		VCS_LOOP_PORT	0	100	48	0
	VCS_WAN_PORT	1	100	33		VCS_LOOP_PORT	32	100	49	1
	VCS_WAN_PORT	2	100	34		VCS_LOOP_PORT	64	100	50	2
	VCS_WAN_PORT	3	100	35	VORTEX 1	VCS_LOOP_PORT	96	100	51	3
	VCS_WAN_PORT	1	100	36		VCS_LOOP_PORT	128	100	52	4
	VCS_WAN_PORT	2	100	37		VCS_LOOP_PORT	160	100	53	5
	VCS_WAN_PORT	3	100	38		VCS_LOOP_PORT	192	100	54	6
	VCS_WAN_PORT	1	100	39		VCS_LOOP_PORT	224	100	55	7
	VCS_WAN_PORT	2	100	40		VCS_LOOP_PORT	256	100	56	8
	VCS_WAN_PORT	3	100	41		VCS_LOOP_PORT	288	100	57	9
	VCS_WAN_PORT	1	100	42	2	VCS_LOOP_PORT	320	100	58	10
	VCS_WAN_PORT	2	100	43	VORTEX 2	VCS_LOOP_PORT	352	100	59	11
	VCS_WAN_PORT	3	100	44		VCS_LOOP_PORT	384	100	60	12
	VCS_WAN_PORT	1	100	45		VCS_LOOP_PORT	416	100	61	13
	VCS_WAN_PORT	2	100	46		VCS_LOOP_PORT	448	100	62	14
	VCS_WAN_PORT	3	100	47		VCS_LOOP_PORT	480	100	63	15
	VCS_LOOP_PORT	0	100	48		VCS_WAN_PORT	1	100	33	16
	VCS_LOOP_PORT	32	100	49		VCS_WAN_PORT	2	100	34	17
.	VCS_LOOP_PORT	64	100	50		VCS_WAN_PORT	3	100	35	18
	VCS_LOOP_PORT	96	100	51		VCS_WAN_PORT	1	100	36	19
VORTEX	VCS_LOOP_PORT	128	100	52		VCS_WAN_PORT	2	100	37	20
-	VCS_LOOP_PORT	160	100	53		VCS_WAN_PORT	3	100	38	21
	VCS_LOOP_PORT	192	100	54		VCS_WAN_PORT	1	100	39	22
	VCS_LOOP_PORT	224	100	55		VCS_WAN_PORT	2	100	40	23
	VCS_LOOP_PORT	256	100	56		VCS_WAN_PORT	3	100	41	24
	VCS_LOOP_PORT	288	100	57		VCS_WAN_PORT	1	100	42	25
VORTEX 2	VCS_LOOP_PORT	320	100	58		VCS_WAN_PORT	2	100	43	26
	VCS_LOOP_PORT	352	100	59		VCS_WAN_PORT	3	100	44	27
	VCS_LOOP_PORT	384	100	60		VCS_WAN_PORT	1	100	45	28
	VCS_LOOP_PORT	416	100	61		VCS_WAN_PORT	2	100	46	29
	VCS_LOOP_PORT	448	100	62		VCS_WAN_PORT	3	100	47	30
	VCS_LOOP_PORT	480	100	63		VCS_WAN_PORT	0	100	32	31

88

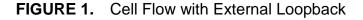
REFERENCE DESIGN PMC-1990815

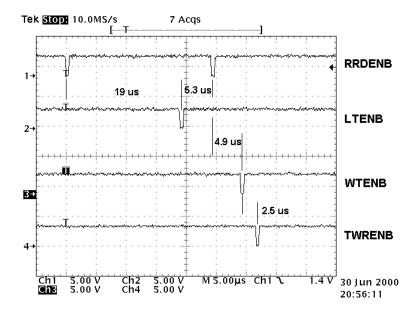
VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

	A test routine sets sixteen ports to/from on the loop side and four ports on the WAN side. The cells from the WAN Card enter the S/UNI-ATLAS with the VCI at 32 through 47. The cells from the loop side (loopback at S/UNI-VORTEX LVDS upstream) enter the S/UNI-ATLAS with the VCI at 48 through 63.
	All cells have VPI = 100. The parameter <i>Port number #1</i> specifies the entry port, and <i>Port number #2</i> specifies the exit port. Ports at the S/UNI-VORTEX1 are distributed across four HSS links with port address 0, 32, 64 up to 480 (this is embedded in Any-PHY ID in the downstream direction and in H5/UDF in the upstream direction). Header remapping is set in the S/UNI-ATLAS. This requires setting the global register 0x200 bit GVPIVCI = 1. Also, the appropriate <i>Header (40)</i> must be entered in the VC Table at row 0111 for each connection.
Stimulus:	Boot the DSLAM shelf with the Core Card from a boot disk and server software. Run the test software routine vtxcsExtLpbkTest16d x . If cables for external LVDS loopback are not available, then diagnostic loopback on the S/UNI-VORTEX1 and 2 can do the job. Also, Tcl script helps expediting settings.
Expected Results:	Data throughput is shaped by the S/UNI-APEX, allowing up to 6 Mb/s per connection and allowing total throughput at the WAN Card (Core Card LVDS of about 6 x 16 = 96 Mb/s).
Actual Results:	The Reference Design Core Card Issue 3 passed the external loopback test with about 6 Mb/s (15 kcell/s) of data at the single DS-3 set at the PM1555A tester.
	Traffic was set at the PM1555A to below 10 kb/s. FIGURE 1 shows the cell flow that was captured with the oscilloscope.

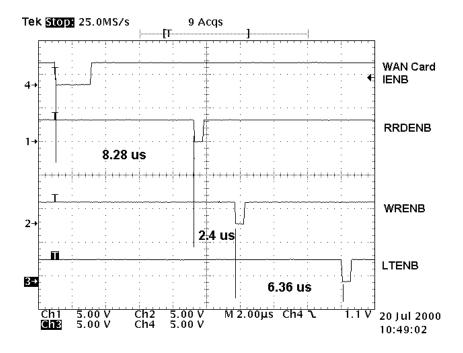



VORTEX CHIPSET

REFERENCE DESIGN PMC-1990815

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD



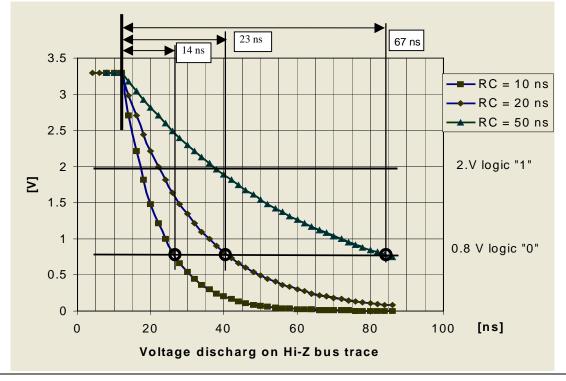
The first cell at the *RRDENB* comes from the WAN Card. The cell passes the S/UNI-ATLAS ingress and is the output from the S/UNI-APEX downstream at *LTENB* about 19 μ s later. The cell arrives at the *RRDENB* about 5.3 μ s later after loopback at the S/UNI-VORTEX. After 4.9 μ s, the cell passes the S/UNI-ATLAS and S/UNI-APEX, and shows up at *WTENB* on the S/UNI-ATLAS Egress Input. Finally, the cell goes in 2.5 μ s through the S/UNI-ATLAS and is sent on *TWRENB* to the S/UNI-DUPLEX and next to the WAN card. The WAN Card is loopback with external DS-3 interface, in such a way that ports 2, 3, and 4 (or software ports 1, 2, and 3) loopback to itself. The cells are sent and received at DS-3 port #1 (or software port 0).

The WAN Card IENB is at 25 MHz and bus width of 8-bits. Therefore, the IENB signal is four times longer than other signals on the Core Card with the clock at 50 MHz and a bus width of 16-bit.

The cell needs about 8.28 μ s to get from the WAN Card to the RRDENB. The cell goes in 2.4 μ s to the WRENB – S/UNI-APEX Loop Rx. The cell leaves the S/UNI-APEX 6.36 μ s later at the LTENB towards S/UNI-VORTEX.

REFERENCE DESIGN PMC-1990815

VORTEX CHIPSET


DSLAM REFERENCE DESIGN: CORE CARD

15. APPENDIX B: VOLTAGE DISCHARGE ON TRI-STATED BUS

ISSUE 4

The voltage discharge on the tri-stated (high-Z) bus line with pull up/down resistors may cause some problems when the time constant is too long. This refers especially to "cell available" lines, for example, RCA, TPA, TCA, ICA, etc. Analyze the situation when there is no pull-down resistor on the "cell available" line. The slave device is polled and responds with logic high on the "cell available" line and then goes into the high-Z. Capacitance distributed across the bus keeps the logic high for many clock cycles. If on the next address cycle master polls mismatched slave address with no slave responding, then logic high on "cell available" kept by capacitance will fool master and master may initiate non-existing cell transfer. At least one cell cycle is lost, and in the worst condition, unwanted FIFO overflow occurs somewhere. The cell count is increased in the corresponding device. That phenomenon was observed upon development. Inexperienced person may have hard time resolving the problem. With a properly assigned bus poll range and a slave address (channel) range, there should be, in most cases, a device that responds low or high on the "cell available" lines. However, we recommend pull-down resistors on all "cell available" lines.

Figure 42 shows the voltage discharge with a different time constant.

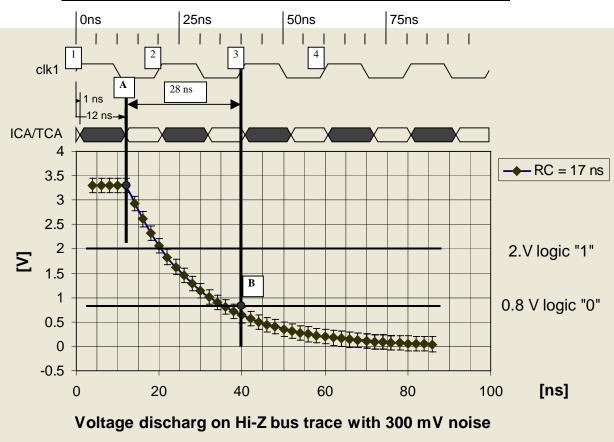


Figure 42. Voltage Discharge on Hi-Z Bus Line

Voltage curves with a time constant at 10 ns, 20 ns, and 50 ns are reaching logic "0" in about 14 ns, 23 ns, and 68 ns respectively.

Figure 43 shows an example of a bus at 50 MHz and a simulated discharge after S/UNI-DUPLEX goes into high-Z.

A 300 mV (\pm 150 mV) noise is added making exercise more realistic in a digital environment.

For example, assume that the S/UNI-DUPLEX goes into high-Z cycle on the clock edge marked "1". Also, at this point, the bus master starts the valid address poll cycle and checks the response at clock edge "3". After 12 ns, according to the S/UNI-DUPLEX data sheet, the output is tri-stated (marked as "A" above). The logic voltage at about 3.3 V starts dropping exponentially. Signal and noise goes below 0.8 V (TTL logic "low" guaranteed by our I/Os) 28 ns later (marked as "B" above). At this point, the clock edge marks "3" samples for "cell available" and finds the signal as logic "low". If the time constant is longer, as shown in Figure 42, the signal can be sampled as logic "high" fooling bus master.

RELEASED	
REFERENCE DESIGN	
PMC-1990815	

VORTEX CHIPSET

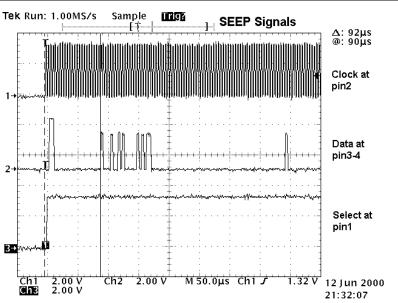
DSLAM REFERENCE DESIGN: CORE CARD

The time constant is determined at 17 ns for this exercise. With a small bus consisting of three devices, the total capacitance can be estimated as 3 * 5 pF + 5 pF = 20 pF total.

The additional 5 pF is for trace and termination resistors. With this capacitance, the pull-down resistor can be calculated as R = (17 ns) / (20 pF) = 0.85 kohm.

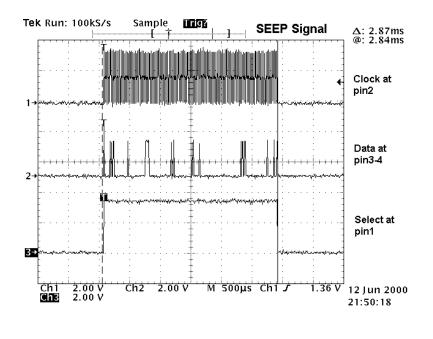
With the bus consisting of 10 devices, the total capacitance is above 55 pF, and the pull-down resistor is calculated at

R = 0.31 kohm. This resistor value may overload the bus driver and prevent it from delivering logic "high" to the bus line. Designer must verify the *cell available* signals on a build board. When choosing a resistor value, a compromise should be found. The system designer should make sure the polling address range matches the slave address range to prevent additional bus cycles and prevent the sending of undeliverable cells that take 27 to 29 clock cycles.


VORTEX CHIPSET

DSLAM REFERENCE DESIGN: CORE CARD

16. APPENDIX C: EXAMPLE OF SEEP READING ON RESET


ISSUE 4

Figures 12 and 13 (below) show an example of reading SEEP on PCI reset. Both figures show a signal at pins CK (pin2), CS (pin1), and DO/DI (pin3-4), while PCI9054 reads SEEP.

Figure 44. Example of SEEP Reading Upon PCI Reset

REFERENCE DESIGN PMC-1990815

VORTEX CHIPSET

DSLAM REFERENCE DESIGN: CORE CARD

17. APPENDIX D: LOCAL BUS TIMING EXAMPLES

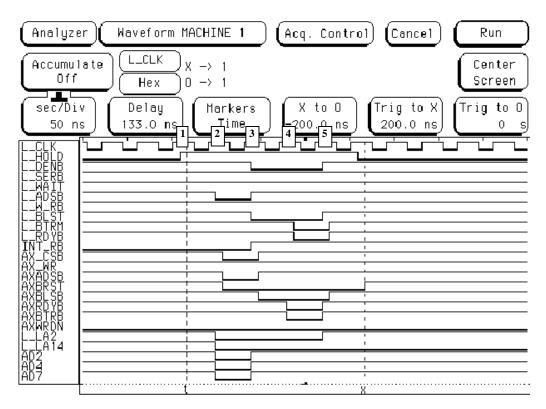
ISSUE 4

17.1.1. Timing Example for Read from S/UNI-APEX

Figure 46 shows an example of a single read from the S/UNI-APEX, captured with a logic analyzer. Due to logic analyzer limitation, the signal abbreviations may not correspond directly to net names on the schematics.

The data transfer is started with a PCI5054 setting of L_HOLD *high*. The S/UNI-APEX asserts the low signal AXRDYB (READYB pin) and AXBTRB (BTERMB pin), which are read into the PCI9054 four clock after line AX_CSB is asserted low. The L_READYB line signals valid data output from the S/UNI-APEX, and that also terminates the data transfer. The PCI9054 de-asserts L_HOLD by toggling it *high* two clocks later. Read from APEX takes eight clock cycles. L_HOLD stays at the *high* setting for eight clock cycles.

Some jitter on data edges is visible due to a 4 ns logic analyzer resolution.



DSLAM REFERENCE DESIGN: CORE CARD

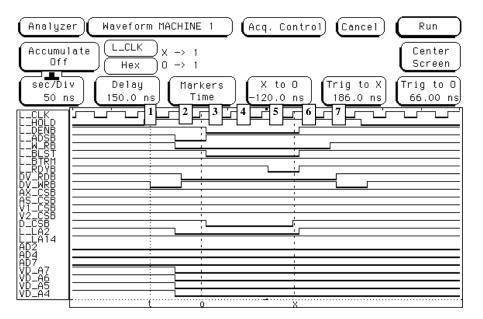
17.1.2. Timing Example for Write to S/UNI-APEX

Figure 47 shows an example of a single write to the S/UNI-APEX, captured with a logic analyzer.

Local address lines L_LA2 and L_LA14 remain steady over three clock cycles, and set the permanent address required for the chip select. Address/Data lines AD2, AD4 and AD7 are all-low with the L_ADSB address strobe at the address cycle (for that particular address) and then toggle to *high* for the data cycle writing all ones to the S/UNI-APEX. A write to the S/UNI-APEX takes five clock cycles, where L_HOLD stays *high* for five clock cycles (at 25 MHz clock, 5 x 40 ns = 200 ns).

REFERENCE DESIGN PMC-1990815

RELEASED


DSLAM REFERENCE DESIGN: CORE CARD

17.1.3. Timing Example for Read from S/UNI-DUPLEX

ISSUE 4

Figure 48 shows an example of the access to the S/UNI-DUPLEX.

Figure 48. Example Read from the S/UNI-DUPLEX

DV_RDB asserted *low* and DV_WRB asserted *high* determines the read from the S/UNI-DUPLEX (DV_RDB and DV_WRB – S/UNI-DUPLEX and S/UNI-VORTEX READ or WRITE *low*). The D_CSB is held low for three clocks, allowing proper access time to the S/UNI-DUPLEX. The L_RDYB goes *low*, signaling to PCI9054 that data is stable and ready to read. The CPLD internal clocking circuit generates the L_RDYB signal, allowing the slower S/UNI-DUPLEX interface to stabilize data. The chip select line D_CSB goes *high* at the same clock edge as the L_RDYB.

The DV_WRB line going *low*, at the very beginning and at the very end of the access to the S/UNI-DUPLEX, is an artifact of the internal logic. However, toggling is outside of the active access to the chip. (Toggle due to controlling of the DV_WRB with L_HOLD.)

Designer must ensure that timing is not violated on all control lines generated with the CPLD.

REFERENCE DESIGN PMC-1990815

RELEASED

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

17.1.4. Timing Example for Write to S/UNI-DUPLEX

Figure 49 shows an example of a write to the S/UNI-DUPLEX.

Figure 49. Example Write to the S/UNI-DUPLEX

Analyze Accumul Off	$\frac{1}{1 \text{ ate}} \xrightarrow{\text{L-CLK}} x \rightarrow 1$	Run Center Screen
	<u>150.0 ns</u>	Trig to 0 66.00 ns
V1_CSB V2_CSB D_CSB L_LA2 L_LA14 AD2 AD4 AD7		
VD_A7 VD_A6 VD_A5 VD_A4 VD_A4		

Address strobe L_ADSB latches address into CPLD, which in turns generates the chip select to a selected device. The S/UNI-DUPLEX chip select line D_CSB goes low:

- Immediately after L_ADSB is deselected
- Two clocks after bus hold L_HOLD initiates access to the S/UNI-VORTEX.

The D_CSB going high latches data into the S/UNI-DUPLEX. At the same clock, CPLD asserts L_RDYB, informing the local bus controller about data being accepted at the S/UNI-DUPLEX and ending the write cycle to the S/UNI-DUPLEX. The DX_CSB is held low for two clocks, allowing proper access time to the S/UNI-DUPLEX. CPLD internally generates the delay.

REFERENCE DESIGN PMC-1990815

VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

18. APPENDIX E: VHDL FOR CPLD

The preliminary VHDL source code for the CPLD is shown below. Internal LED D12, D13 and D15 programming variations may occur on particular production runs of the Core Card. Programming of those LEDs have no affect on control functions of the CPLD.

Check the PMC-Sierra, Inc. web site for the latest source code.

PMC-Sierra PROPRIET				
Copyright 19	999 PMC-Sierra,	, Inc.		
program ma	ay be used, modi means without t	fied, repi	cumentation or comp roduced, or distribute written permission of	
confidential information or unlawful irreparable l	business information (collectively, the disclosure of any	ation and "Informa or all of n signific	rogram contains trade d commercial or finan ation") of PMC-Sierra, f the Information may cant commercial and	cial Inc.,
PMC-Sierra 105 - 8555 I Burnaby, B. Canada V Tel: 604-41 Fax: 604-41 email: apps	Baxter Place C. 5A 4V7 5-6000	n		
File Name Path	: PMC-990815 : dslam_core_c : : PMC-Sierra, I			
Revision His Issue 1 Function:	Date 09/09/99	xx	Description Initial Release	

-- This is the top level of the VHDL code required for the DSLAM CORE

VORTEX CHIPSET

REFERENCE DESIGN PMC-1990815

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

-- reference design. The code provides control to the micro ports on

-- all PMC devices (1 S/UNI-DUPLEX, 2 S/UNI-VORTEXes, 1 S/UNI-ATLAS,

-- 1 S/UNI-APEX) present on the DSLAM CORE Card.

library IEEE; use IEEE.std_logic_1164.ALL; use IEEE.std_logic_arith.ALL; ENTITY cccpld IS PORT (I_clk1 : IN STD_LOGIC; I la : IN STD LOGIC VECTOR(11 DOWNTO 2); I_la_dec : IN STD_LOGIC_VECTOR (2 DOWNTO 0); I_ad : INOUT STD_LOGIC_VECTOR(15 DOWNTO 0); I blastb : IN STD LOGIC; I_btermb : OUT STD_LOGIC; I_w_rb : IN STD_LOGIC; I_readyb : OUT STD_LOGIC; I_adsb : IN STD_LOGIC; I_waitb : IN STD_LOGIC; I intb : OUT STD LOGIC; I denb : IN STD LOGIC; I Iserrb : IN STD LOGIC; I bhold : IN STD LOGIC; vx dx d : INOUT STD LOGIC VECTOR(7 DOWNTO 0); vx_dx_a : OUT STD_LOGIC_VECTOR(9 DOWNTO 0);

rstb : IN STD_LOGIC; rstb1 : IN STD_LOGIC; dx_vx_rdb : OUT STD_LOGIC; dx_vx_wrb : OUT STD_LOGIC; dx_csb : OUT STD_LOGIC; vx1_csb : OUT STD_LOGIC; vx2_csb : OUT STD_LOGIC;

dx_intb : IN STD_LOGIC; vx1_intb : IN STD_LOGIC; vx2_intb : IN STD_LOGIC;

as_busyb : IN STD_LOGIC; as_intb : IN STD_LOGIC; as_wrb : OUT STD_LOGIC; as_rdb : OUT STD_LOGIC; as_csb : OUT STD_LOGIC;

ax_csb : OUT STD_LOGIC; ax_wr : OUT STD_LOGIC;

REFERENCE DESIGN PMC-1990815

VORTEX CHIPSET

DSLAM REFERENCE DESIGN: CORE CARD

ax_adsb : OUT STD_LOGIC; ax_burstb : OUT STD_LOGIC; ax_blast : OUT STD_LOGIC; ax_readyb : IN STD_LOGIC; axhi_intb : IN STD_LOGIC; axlo_intb : IN STD_LOGIC; ax_wrdoneb : IN STD_LOGIC; ax_btermb : IN STD_LOGIC;

ISSUE 4

dxrx_8k : IN STD_LOGIC; vx1rx_8k : IN STD_LOGIC; vx2rx_8k : IN STD_LOGIC; ck_8kref : IN STD_LOGIC; ck_8kout : OUT STD_LOGIC; ck_pll_in : OUT STD_LOGIC; ck_pll_out : IN STD_LOGIC; ck_8kout_all : OUT STD_LOGIC;

slot6 : IN STD_LOGIC; -- optional; not shown on block diagram type0 : IN STD_LOGIC; -- optional; same type1 : IN STD_LOGIC; -- optional; same

ledx1 : OUT STD_LOGIC; ledx2 : OUT STD_LOGIC; ledx4 : OUT STD_LOGIC;

leds : OUT STD_LOGIC_VECTOR(13 DOWNTO 0); -- always turned ON with reset ga : IN STD_LOGIC_VECTOR(2 DOWNTO 0) -- optional, not used for this Core Card Issue 3);

END cccpld;

ARCHITECTURE cccpld_arch OF cccpld IS

CONSTANT c_REG_ADDR_INTB : STD_LOGIC_VECTOR := "0000000000"; CONSTANT c_REG_ADDR_LED : STD_LOGIC_VECTOR := "0000000001"; CONSTANT c_REG_ADDR_8KHz : STD_LOGIC_VECTOR := "0000000010"; CONSTANT c_REG_INTB : INTEGER := 0; CONSTANT c_REG_LED : INTEGER := 1; CONSTANT c_REG_8KHz : INTEGER := 1; CONSTANT c_BIT_DX_INT_ENB : INTEGER := 13; CONSTANT c_BIT_VX2_INT_ENB : INTEGER := 13; CONSTANT c_BIT_VX2_INT_ENB : INTEGER := 12; CONSTANT c_BIT_VX1_INT_ENB : INTEGER := 11; CONSTANT c_BIT_AS_INT_ENB : INTEGER := 10; CONSTANT c_BIT_AXLO_INT_ENB : INTEGER :=9; CONSTANT c_BIT_AXHI_INT_ENB : INTEGER :=8;

REFERENCE DESIGN PMC-1990815

VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

CONSTANT c_BIT_DX_INT : INTEGER :=5; CONSTANT c BIT VX2 INT : INTEGER :=4; CONSTANT c_BIT_VX1_INT : INTEGER :=3; CONSTANT c_BIT_AS_INT : INTEGER :=2; CONSTANT c BIT AXLO INT : INTEGER :=1; CONSTANT c_BIT_AXHI_INT : INTEGER :=0; CONSTANT c_BIT_HEADER_8KHz : INTEGER := 0; CONSTANT c BIT PII 0 : INTEGER := 1; CONSTANT c_BIT_PII_1 : INTEGER := 2; CONSTANT c_ADDR_AX : STD_LOGIC_VECTOR(2 DOWNTO 0) := "000"; CONSTANT c ADDR CPLD : STD LOGIC VECTOR(2 DOWNTO 0) := "001"; CONSTANT c_ADDR_AS : STD_LOGIC_VECTOR(2 DOWNTO 0) := "010"; CONSTANT c ADDR VX1 : STD LOGIC VECTOR(2 DOWNTO 0) := "011"; CONSTANT c ADDR VX2 : STD LOGIC VECTOR(2 DOWNTO 0) := "100"; CONSTANT c_ADDR_DX : STD_LOGIC_VECTOR(2 DOWNTO 0) := "101"; CONSTANT c_CLOCK_PERIOD : INTEGER := 40;

TYPE STD_LOGIC_2D IS ARRAY (2 DOWNTO 0) OF STD_LOGIC_VECTOR(15 DOWNTO 0); SIGNAL reg_file : STD_LOGIC_2D;

SIGNAL dvas_readyb : STD_LOGIC; SIGNAL dx_vx_as_readyb : STD_LOGIC; SIGNAL dx_select : STD_LOGIC; SIGNAL vx1_select : STD_LOGIC; SIGNAL vx2_select : STD_LOGIC;

BEGIN

I_ad(7 DOWNTO 0) <= vx_dx_d WHEN I_w_rb = '0' AND I_denb = '0' AND ((I_la_dec = c_ADDR_DX) OR (I_la_dec = c_ADDR_VX1) OR (I_la_dec = c_ADDR_VX2))

ELSE reg_file(c_REG_INTB)(7 DOWNTO 0) WHEN I_w_rb = '0' AND I_denb = '0' AND ((I_la_dec = c_ADDR_CPLD) AND (I_la = c_REG_ADDR_INTB))

ELSE reg_file(c_REG_LED)(7 DOWNTO 0) WHEN I_w_rb = '0' AND I_denb = '0' AND ((I_la_dec = c_ADDR_CPLD) AND (I_la = c_REG_ADDR_LED))

ELSE reg_file(c_REG_8KHZ)(7 DOWNTO 0) WHEN I_w_rb = '0' AND I_denb = '0' AND ((I_la_dec = c_ADDR_CPLD) AND (I_la = c_REG_ADDR_8KHZ))

ELSE "ZZZZZZZ";

```
I_ad(15 DOWNTO 8) <= reg_file(c_REG_INTB)(15 DOWNTO 8) WHEN I_w_rb = '0' AND
I_denb = '0' AND ((I_la_dec = c_ADDR_CPLD) AND (I_la = c_REG_ADDR_INTB))
```

ELSE reg_file(c_REG_LED)(15 DOWNTO 8) WHEN I_w_rb = '0' AND I_denb = '0' AND ((I_la_dec = c_ADDR_CPLD) AND (I_la = c_REG_ADDR_LED))

ELSE reg_file(c_REG_8KHZ)(15 DOWNTO 8) WHEN I_w_rb = '0' AND I_denb = '0' AND ((I_la_dec = c_ADDR_CPLD) AND (I_la = c_REG_ADDR_8KHZ))

ELSE "ZZZZZZZ";

REFERENCE DESIGN PMC-1990815

VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

vx_dx_d <= l_ad(7 DOWNTO 0) WHEN l_w_rb = '1' AND l_denb = '0' AND ((l_la_dec = c_ADDR_DX) OR (l_la_dec = c_ADDR_VX1) OR (l_la_dec = c_ADDR_VX2) OR (l_la_dec = c_ADDR_AS))

ELSE "ZZZZZZZ";

ck_pll_in <= dxrx_8k WHEN reg_file(c_REG_8KHZ)(c_BIT_PII_0) = '0' AND reg_file(c_REG_8KHZ)(c_BIT_PII_1) = '0'

else vx1rx_8k WHEN reg_file(c_REG_8KHz)(c_BIT_PII_0) = '1' AND reg_file(c_REG_8KHz)(c_BIT_PII_1) = '0'

else vx2rx_8k WHEN reg_file(c_REG_8KHz)(c_BIT_PII_0) = '0' AND reg_file(c_REG_8KHz)(c_BIT_PII_1) = '1' else '0';

ck_8kout <= ck_8kref WHEN reg_file(c_REG_8KHz)(c_BIT_HEADER_8KHz) = '0' else ck_pll_out;

ck_8kout_all <= ck_8kref WHEN reg_file(c_REG_8KHz)(c_BIT_HEADER_8KHz) = '0' else ck_pll_out;

-- This toggles interrupt bits <5..0> c_BIT_xx_xx in register 0x4000 c_REG_INTB reg_file(c_REG_INTB)(c_BIT_DX_INT) <= (NOT dx_intb); reg_file(c_REG_INTB)(c_BIT_VX1_INT) <= (NOT vx1_intb); reg_file(c_REG_INTB)(c_BIT_VX2_INT) <= (NOT vx2_intb); reg_file(c_REG_INTB)(c_BIT_AS_INT) <= (NOT as_intb); reg_file(c_REG_INTB)(c_BIT_AXHI_INT) <= (NOT axhi_intb); reg_file(c_REG_INTB)(c_BIT_AXLO_INT) <= (NOT axlo_intb);

I_intb <= (NOT ((NOT dx_intb) AND (reg_file(c_REG_INTB)(c_BIT_DX_INT_ENB)))) AND (NOT ((NOT vx1_intb) AND (reg_file(c_REG_INTB)(c_BIT_VX1_INT_ENB)))) AND (NOT ((NOT vx2_intb) AND (reg_file(c_REG_INTB)(c_BIT_VX2_INT_ENB)))) AND (NOT ((NOT as_intb) AND (reg_file(c_REG_INTB)(c_BIT_AS_INT_ENB)))) AND (NOT ((NOT axhi_intb) AND (reg_file(c_REG_INTB)(c_BIT_AXHI_INT_ENB)))) AND (NOT ((NOT axlo_intb) AND (reg_file(c_REG_INTB)(c_BIT_AXHI_INT_ENB)))) AND

-- LED15 LEDX4, red, also TP_66, inverted l_intb interrupt to PCI9054; always ON with reset ledx4 <= ((NOT rstb) OR NOT ((NOT dx_intb) AND

```
(reg_file(c_REG_INTB)(c_BIT_DX_INT_ENB)) )) AND
```

(NOT ((NOT vx1_intb) AND (reg_file(c_REG_INTB)(c_BIT_VX1_INT_ENB)))) AND (NOT ((NOT vx2_intb) AND (reg_file(c_REG_INTB)(c_BIT_VX2_INT_ENB)))) AND (NOT ((NOT as_intb) AND (reg_file(c_REG_INTB)(c_BIT_AS_INT_ENB)))) AND (NOT ((NOT axhi_intb) AND (reg_file(c_REG_INTB)(c_BIT_AXHI_INT_ENB)))) AND (NOT ((NOT axlo_intb) AND (reg_file(c_REG_INTB)(c_BIT_AXLO_INT_ENB))))));

-- LOS or LCD LEDs, red; always ON with reset leds <= reg_file(c_REG_LED)(13 DOWNTO 0); REFERENCE DESIGN PMC-1990815

VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

```
-- LED13 LEDX1, red, all interrupts from chipset together; always ON with reset
ledx2 <= ((NOT rstb) OR (NOT (dx_intb AND vx1_intb AND vx2_intb AND as_intb AND
axhi_intb AND axlo_intb)));
```

-- LED12, LEDX2, red; access to DUPLEX or VORTEX; always ON with reset ledx1 <= ((NOT rstb) OR dx_vx_as_readyb);

```
-- LED14 LEDX3, red; not connected and not defined
```

```
dx_select <= '1' WHEN (I_la_dec = c_ADDR_DX) ELSE '0';
vx1_select <= '1' WHEN (I_la_dec = c_ADDR_VX1) ELSE '0';
vx2_select <= '1' WHEN (I_la_dec = c_ADDR_VX2) ELSE '0';
```

dx_vx_rdb <= NOT ((NOT I_w_rb) AND I_bhold);

```
-- dx_vx_rdb <= '0' WHEN I_w_rb = '0' AND I_bhold = '1' AND ((I_la_dec = c_ADDR_DX)
-- OR (I_la_dec = c_ADDR_VX1) OR (I_la_dec = c_ADDR_VX2)) ELSE '1';</pre>
```

```
dx_vx_wrb <= NOT ((I_w_rb) AND I_bhold);
```

```
as_rdb <= '0' WHEN I_w_rb = '0' AND I_bhold = '1' AND (I_la_dec = c_ADDR_AS)
ELSE '1';
as_wrb <= '0' WHEN I_w_rb = '1' AND I_bhold = '1' AND (I_la_dec = c_ADDR_AS)
ELSE '1';
```

```
vx_dx_a <= l_la;
```

```
ax_adsb <= '0' WHEN (I_adsb = '0') AND (I_la_dec = c_ADDR_AX)
ELSE '1';
ax_csb <= '0' WHEN (I_adsb = '0') AND (I_la_dec = c_ADDR_AX)
ELSE '1';
ax_wr <= I_w_rb;
ax_burstb <= '0' WHEN (I_la_dec = c_ADDR_AX) AND (I_bhold = '1') ELSE '1';
```

```
-- ax_burstb <= '1';
ax_blast <= I_blastb WHEN (I_la_dec = c_ADDR_AX) AND (I_bhold = '1') ELSE '1';
```

```
I_btermb <= ax_btermb WHEN (I_la_dec = c_ADDR_AX) AND (I_bhold = '1') ELSE '1';
I_readyb <= ((ax_readyb AND dx_vx_as_readyb) OR I_denb);
```

```
PROCESS (rstb, I_clk1)
VARIABLE timer : INTEGER RANGE 0 TO 31;
BEGIN
IF (rstb = '0') THEN
dvas_readyb <= '1';
dx_csb <= '1';
```

PMC-1990815

PMC PMC-Sierra, Inc. REFERENCE DESIGN

ISSUE 4

VORTEX CHIPSET

```
vx1_csb <= '1';
vx2 csb <= '1';
as_csb <= '1';
dx_vx_as_readyb <= '1';
timer := 0;
-- Bits 5 downto 0 are set by PMC Devices' INTB output lines.
reg_file(c_REG_INTB)(15 DOWNTO 6) <= "0000000000";
reg_file(c_REG_8KHz) <= "00000000000000";
reg_file(c_REG_LED) <= "0011111111111111";
ELSIF (I_clk1'EVENT AND I_clk1 = '1') THEN
 IF I adsb = '0' THEN
  timer := 0;
  dx_vx_as_readyb <= '1';
 ELSE
  IF timer < 31 THEN
   timer := timer + 1;
  END IF;
 END IF;
 CASE I la dec IS
  WHEN c_ADDR_DX =>
   IF I_adsb = '0' THEN
       dx csb <= '0';
   END IF;
   IF I w rb = '0' THEN
       IF timer = 2 THEN
     dx vx as readyb \leq 0';
    ELSIF timer = 3 THEN
        dx_csb <= '1';
       END IF;
   ELSE
       IF timer = 2 THEN
        dx_csb <= '1';
        dx_vx_as_readyb <= '0';
       END IF;
   END IF;
  WHEN c_ADDR_VX1 =>
   IF I adsb = '0' THEN
       vx1_csb <= '0';
   END IF;
   IF I_w_rb = '0' THEN
       IF timer = 2 THEN
```

REFERENCE DESIGN PMC-1990815

VORTEX CHIPSET

DSLAM REFERENCE DESIGN: CORE CARD

```
dx_vx_as_readyb <= '0';
      ELSIF timer = 3 THEN
       vx1_csb <= '1';
      END IF;
  ELSE
      IF timer = 2 THEN
       vx1_csb <= '1';
       dx_vx_as_readyb <= '0';
      END IF;
  END IF:
 WHEN c_ADDR_VX2 =>
  IF I adsb = '0' THEN
      vx2 csb <= '0';
  END IF;
  IF I_w_rb = '0' THEN
      IF timer = 2 THEN
       dx_vx_as_readyb <= '0';
      ELSIF timer = 3 THEN
       vx2 csb <= '1';
      END IF:
  ELSE
      IF timer = 2 THEN
       vx2_csb <= '1';
dx_vx_as_readyb <= '0';
      END IF;
  END IF;
 WHEN c_ADDR_AS =>
  IF I_adsb = '0' THEN
       as csb \leq 0';
   END IF;
      IF as_busyb = '1' THEN
       IF I_w_rb = '0' THEN
        IF timer = 2 THEN
         dx_vx_as_readyb <= '0';
        ELSIF timer = 3 THEN
         as_csb <= '1';
        END IF;
       ELSE
        IF timer = 2 THEN
         as_csb <= '1';
         dx_vx_as_readyb <= '0';
        END IF;
```

ISSUE 4

REFERENCE DESIGN PMC-1990815

VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

END IF; ELSE IF timer > 0 THEN timer := timer - 1; END IF; END IF; WHEN c_ADDR_CPLD => IF I_w_rb = '1' THEN IF timer = 1 THEN dx_vx_as_readyb <= '0'; CASE I_la IS WHEN c_REG_ADDR_INTB => reg_file(c_REG_INTB)(15 DOWNTO 6) <= l_ad(15 DOWNTO 6);</pre> WHEN c_REG_ADDR_LED => reg_file(c_REG_LED) <= l_ad; WHEN c_REG_ADDR_8KHz => reg_file(c_REG_8KHz) <= l_ad; WHEN OTHERS => END CASE; END IF; ELSE IF timer = 1 THEN dx_vx_as_readyb <= '0'; END IF; END IF; WHEN OTHERS => END CASE; END IF; END PROCESS; END;

REFERENCE DESIGN PMC-1990815

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

19. APPENDIX F: BILL OF MATERIAL

Table 9 shows the bill of material (BOM) for the Core Card.

TABLE 9.Core Card BOM

Item	Description	Vendor Part No.	Reference Designator	Qty
1.	CAPACITOR-1.0 uF, 16 V, Y5V_805 *** due to assembly process, some boards may be assembled with 0.22 uF (read below for more info)	any	C114-C145, C179-C188, C193- C214, C244-C251	
2.	CAPACITOR-0.1 uF, 16 V, X7R_603	any	C2, C3, C80, C86, C146-C153, C174-C178, C189, C190, C192, C215-C227, C229, C233, C236, C237, C240, C241, C260, C261	41
3.	CAPACITOR-4.7 uF, 10 V, TANT TEH	-	C235, C238	2
4.	CAPACITOR-68 uF, 6.3 V, TANT TEH	-	C239	1
5.	CAPACITOR-0.01 uF, 16 V, X7R_402	any	C5, C6, C8, C10-C16, C18-C29, C31, C32, C34-C53, C57-C79, C81- C83, C89, C92, C93, C96-C101, C103-C113, C154, C155, C158, C159, C162-C173, C191, C228, C231, C254, C255, C258, C259, C262, C263, C266-C272, C276, C279-C305, C307-C313	157
6.	METALIZED FILM CAPACITOR, 0.015 uF, 16 V, 1206	PCF1078CT-ND (Digi-Key)	C85, C88	2
7.	CAPACITOR-22 uF, 6.3V, TANT TE	any	C4, C9, C17, C30, C33, C54-C56, C91, C94, C95, C102, C156, C157, C160, C161, C230, C232, C234, C242, C243, C252, C253, C256, C257, C264, C265, C273-C275, C277, C278	32
8.	ZENER DIODE, 150 mW, 10V, SMD	any	D1, D2	2
9.	LED, SMD, RED	any	D8, D12-D15	5
10.	SCHOTTKY BARRIER RECTIFIER, 3 A, 20 V, SMD	SK32DI (digi-Key)	D3, D11	2
11.	QUAD YELLOW/RED/GREEN/ GREEN LED.	SSF-LXH5147LYIGGD (Lumex)	D4	1
12.	QUAD RED LED.	SSF-LXH5147IIIID (Lumex)	D5-D7	3
13.	SHOTTKY DIODE, LOW CURRENT, 30 mA, 0.30 V, SMD	MA732CT	D8	1
14.	T-1 3/4 LED BLUE VERTICAL PCB MOUNT	LNG995PF9 (PANASONIC)	D9	1
15.	CONNECTOR ZPACK CPCI 2MM HM 110 POS. TYPE A WITH GND SHIELD	352068-1 (AMP)	J1	1
16.	CONNECTOR ZPACK CPCI 2MM HM 110 POS., TYPE B WITH GND SHIELD	352152-1 (AMP)	J5	
17.	HEADER 2, 0.1" SPACING	any	J45, J65, J72, J73, J74	5
18.	HEADER 2X4 100MIL MALE	any	J36	1
19.	IEEE 1394-1995 SHIELD RIGHT ANGLE, 2 mm PIN SPACING	53460-0611 (MOLEX)	J46-J63	18
20.	3-PIN HEADER. 0.1" SPACING	any	J64	1
21.	6-PIN HEADER. 0.1" SPACING	any	J66	1

PMC-1990815

VORTEX CHIPSET

REFERENCE DESIGN

ISSUE 4

22.	HEADER 1X3, 2 mm	any	J6-J35, J37-J44, J67, J68	40
23.	HEADER, 1x3, 1.25 mm, MOLEX	53047-0310	TP115	1
24.	Ejector handle microswitch, MOLEX	20817-500		1
25.	OPTIONAL: 38 PIN SIGNAL CONNECTOR, MATCHED iMPEDANCE, 0.025, SMD	2-767004-2 (AMP)	OPTIONAL TEST CONNECTORS: J70, J71	2
26.	GENERAL PURPOSE TRANSISTOR, NPN, SOT-23	MMBT3904LT1 (MOT)	Q1	1
27.	GENERAL PURPOSE TRANSISTOR, PNP, SOT-23	MMBT3906LT1 (MOT)	Q4	1
28.	MOSFET, LOW VOLTAGE	ZXM61N0 2F	Q5, Q6, Q7	3
29.	0.007 OHM, 20 V, HEXFET POWER MOSFET	IRL3502S (IR)	Q2	1
30.	0.047 OHM, 30 V, POWER MOSFET	DI9410	Q3	1
31.	RESISTOR-56, 5 %, 603	any	R16, R23, R28, R32-R35, R39-R41, R55-R61, R66, R192, R199, R201, R204, R206, R210, R216, R262, R282-R287, R300, R311, R315, R316, R323, R325, R343, R348	40
32.	RESISTOR-750, 5 %, 603	any	R106, R108, R110, R112, R114, R116, R118, R120, R176, R178, R180, R182, R184, R186, R188, R190, R239, R240	18
33.	RESISTOR-100 k, 5 %, 603	any	R18, R317, R351	3
34.	RESISTOR-200, 5 %, 603	any	R195, R196	2
35.	RESISTOR-22, 5 %, 603	any	R197, R219, R308-R310, R312, R334	7
36.	RESISTOR-330, 5 %, 603	any	R2, R46, R49, R123, R211, R217, R230, R259, R277-R279, R307, R326, R328, R329	15
37.	RESISTOR-2.2 k, 5 %, 603	any	R205	1
38.	RESISTOR-1.0 k, 5 %, 603	any	R43, R156, R203, R207, R245, R252, R256, R330	8
39.	RESISTOR-7.5 M, 5 %, 805	any	R215	1
40.	RESISTOR-1.00 M, 1 %, 603	any	R22, R36, R37, R45, R47, R62-R65, R67-R84, R87-R89, R128-R154, R157-R159, R193, R194, R212- R214, R296, R297, R299, R303- R306	72
41.	RESISTOR-820, 5 %, 603	any	R220, R241, R254, R288, R289	5
42.	RESISTOR-15 k, 5 %, 603	any	R6, R353	2
43.	RESISTOR-220, 5 %, 603	any	R29, R232	2
44.	RESISTOR-100, 5 %, 603	any	R233, R246-R251, R263-R265, R267-R269, R271-R273	16
45.	RESISTOR-3.0 k, 5 %, 603	any	R243	1
46.	RESISTOR-20, 5 %, 603	any	R281, R295	2
47.	RESISTOR-220, 5 %, 603	any	R29, R232	2
48.	RESISTOR-470, 5 %, 603	any	R224, R301, R302, R313, R314	5
49.	RESISTOR-560, 5 %, 603		R227	1
50.	RESISTOR-0.01, 5 %, 2714	any	R30, R200 (recommended to decrease R200 to 0.005 ohm)	2
51.	RESISTOR-0, 5 %, 603	any	R198, R333, R336, R337, R340- R342, R355, R27, R44, R51, R124, R125, R221, R231, R274	16
52.	RESISTOR-0, 5 %, 0805	any	R54, R127, R234	3

VORTEX CHIPSET

REFERENCE DESIGN PMC-1990815

ISSUE 4

53.	RESISTOR-4.7, 5 %, 0805	any	R42, R126, R244	3
54.	RESISTOR-10 M, 5 %, 1206	any	R319-R321	3
55.	RESISTOR-10, 5 %, 603	any	R335	1
56.	RESISTOR-49.9, 1 %, 603	any	R38, R85, R86, R91, R93, R95, R97, R99, R101, R103, R105, R107, R109, R111, R113, R115, R117, R119, R121, R161, R163, R165, R167, R169, R171, R173, R175, R177, R179, R181, R183, R185, R187, R189, R191, R235, R236	37
57.	RESISTOR-4.7 k, 5%, 603	any	R1, R3-R5, R7-R15, R17, R19, R20, R24-R26, R50, R155, R202, R208, R209, R222, R223, R225, R226, R228, R229, R242, R253, R257, R260, R266, R270, R275, R276, R280, R291-R294, R298, R324, R327, R338, R339, R346, R349, R352, R354, R356, R390, R391	55
58.	RESISTOR-4.75 k, 1 %, 603	any	R48, R122, R290	3
59.	RESISTOR-4.12 k, 1 %, 603	any	R52	1
60.	RESISTOR-430, 5 %, 603	any	R90, R92, R94, R96, R98, R100, R102, R104, R160, R162, R164, R166, R168, R170, R172, R174, R237, R238	18
61.	RES_ARRAY_4_SMD-4.7 k	any	RN1, RN6, RN7, RN12-RN17, RN38, RN86, RN89	12
62.	RES_ARRAY_4_SMD-22	any	RN2, RN3, RN25, RN27-RN30, RN32-RN34, RN36, RN37, RN39- RN41, RN52, RN54, RN55, RN60- RN62, RN64, RN68, RN85, RN91, RN92, RN99, RN100, RN102, RN104-RN10 7, RN111-RN13 5	58
63.	RES_ARRAY_4_SMD-2.2 k	any	RN20, RN67, RN69, RN70	4
64.	RES_ARRAY_4_SMD-56	any	RN4, RN5, RN8-RN11, RN18, RN19, RN21-RN24, RN26, RN31, RN35, RN42-RN51, RN53, RN56- RN59, RN87, RN108-RN110, RN136-RN139	38
65.	RES_ARRAY_4_SMD-330	any	RN63	1
66.	RES_ARRAY_4_SMD-15 k	any	RN65, RN66, RN84, RN88, RN90, RN93-RN98, RN101, RN103	13
67.	RES_ARRAY_4_SMD-10	any	RN71-RN83, RN140	14
68.	S/UNI-ATLAS LAYER SOLUTION	PM7324 DI (PMC-Sierra, Inc.)	U1	1
69.	S/UNI-APEX ATM TRAFFIC MANAGER	PM7326 BI (PMC-Sierra, Inc.)	U7	1
70.	S/UNI-VORTEX	PM7351-BI (PMC-Sierra, Inc.)	U19, U20	2
71.	S/UNI-DUPLEX	PM7350-BI (PMC-Sierra, Inc.)	U27	1
72.	3.3 V, 100 MHz, 8MB NBT SRAM (512 k x 18), 119-PBGA	GS882Z18B-100 (GSI)	U10, U12	2
73.	VERY HIGH SPEED, QUAD BUFFER WITH THREE STATE OUTPUTS	SN74ALVC125D (TI)	U17, U25, U26	3
74.	PROGRAMMABLE CLOCK RECOVERY PLL, 20-PIN SMD	MK2049-01S (ICS Microclock)	U13	1
75.	FAIRCHILD 4 kbit SERIAL EEPROM, 8_PIN DIP, SOCKET, 8-PIN DIP	NM93CS66EN (Fairchild)	U14	1
76.	DUAL HOT SWAP CONTROLLER	LTC1645CS8 (LT)	U16	1
77.	+5 V and 3.3 V SUPERVISING	LTC1326CMS8 (LT)	U11	1

VORTEX CHIPSET

REFERENCE DESIGN PMC-1990815

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

	CIRCUIT			
78.	LOW VOLTAGE OP-AMP, RAIL-TO- RAIL IN/OUT, SOIC8 PACKAGE	TLV2461CD (TI)	U18	1
79.	DUAL 1-TO-5 CLOCK BUFFER	QS53805 (Quality Smi.)	U2, U3	2
80.	REGULATOR, 2.5 V, 800 mA, POSITIVE, LOW DROPOUT	LT1118CST-2.5 (LT)	U21	1
81.	MINI-LOGIC, AND GATE, IN SSOP5 PACKAGE, 0.95 MM PIN-SPACING, 3.3 V TO 5 V	TC7S08FCT (Toshiba)	U22, U23	2
82.	PCI I/O ACCELERATOR	PCI9054-AA50PI (PLX)	U15	1
83.	IN-SYSTEM PROGRAMMABLE CPLD, 288 MICROCELLS	XC95288XL-10TQ144 C (Xilinx)	U31	1
84.	3.3V, 100 MHz, 1MB SSRAM (512 k x 36)	GS88036T-100 (GSI)	U4-U6	3
85.	3.3 V, 100 MHz, 8 Mbit SDRAM (1Mbit x 4 BANKS x 16 WIDE)		U8, U9	2
86.	EPSON 12.288 MHz CRYSTAL	MA-505-12.288M-C2 (Epson)	Y1	1
87.	OSCILLATOR, 50 MHz, 3.3 V, 50PPM	CB3LV-3C-50.0000- T	Y2	1
88.	OSCILLATOR, 25 MHz, 3.3 V, 50PPM	CB3LV-3C-25.0000- T	Y3, Y5	2
89.	OSCILLATOR, 80 MHz, 3.3 V, 50PPM	CB3LV-3C-80.0000- T	Y4	1
90.		N/u	C1, C7, C84, C87, C90	
91.		N/u	R21, R31, R53, R218, R255, R258, R261, R318, R322, R331, R332, R344, R345, R347, R350	
92.		N/u	L1, Q4	
93.		Not a part – pads for optional wire strapping	DP1, DP2, ZQ1, ZQ2	
94.		Not a part – optional test pads, mounting holes, or wiring pads	A0, ADSC1, ADSC2, AS_ICLK, BA0, BA1, CAS, CE1, CKL3, CLK, CLK4, CMA0, CMD0, CS, DQ, DQ0, D_CLK, ESA0, ESA16, ESD0, ESP0, GND1-GND4, GW1, GW2, ISA0, ISA16, ISD0, ISP0, OE1, OE2, RAS, RW, TP1-TP3, TP7-TP17, TP21-TP32, TP35-TP37, TP42- TP49, TP66-TP69, TP72-TP76, TP78, TP79, TP81-TP117, TP_2.5V, TP_3.3V, TP_RSTB, TP_VCC, WE, DP1, DP2, FT1, FT2, JP1-JP4, JP8, JP9, JP11-JP13, JP16-JP18, VDD1, VDD2, ZQ1, ZQ2 M1, P1	
95.				

***/ Due to assembly process, some boards may have serial LVDS capacitors assembled with 0.22 uF. It is recommended to observe baseline wander in real systems, and possibly increase capacitor value to 1.0 uF. That may be especially important if LVDS is run at slower speed, i.e. 100 Mbps (our Core Card runs at 200 Mbps).

REFERENCE DESIGN PMC-1990815

VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

20. APPENDIX G: SCHEMATIC DIAGRAMS

The Core Card schematic pages are organized by blocks, as shown in the "Core Card Root Drawing", page 1. Each block may have one or two pages. If two pages are in a single block, then each page has the additional number 1 or 2 shown on each page title, for example, S/UNI-APEX 1 and S/UNI-APEX 2.

The interconnections between blocks are marked with the suffix "\l", for example, RSTB\I, L_AD<31..0>\I, etc. Interconnections on the same page or between two pages in the same block do not have the suffix, for example, L_BTERMB, L_DENB, etc: All interconnections with the suffix "\l" on individual pages are shown in "Core Card Root Drawing" on page 1. However, page 1 netlists do not show the suffix "\l" (the way Concept CAD tool works). Single page or single block connections are not shown on page 1.

Page 1: Root drawing with interconnections between blocks.

Page 2 – FRONT: IEEE 1394 LVDS connectors, front panel LEDs, blue LED and ejector switch header

Page 3 – S/UNI-VORTEX2 BLOCK: S/UNI-VORTEX 2, page 1, digital subblocks and power.

Page 4 – S/UNI-VORTEX2 BLOCK: S/UNI-VORTEX 2, page 2, LVDS ports.

Page 5 – S/UNI-DUPLEX: S/UNI-DUPLEX, LVDS ports, digital sub-blocks and power.

Page 6 – S/UNI-VORTEX1 BLOCK: S/UNI-VORTEX 1, page 1, digital subblocks and power.

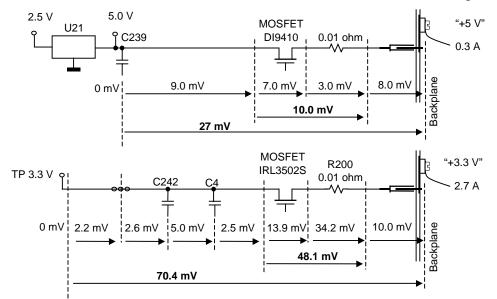
Page 7 – S/UNI-VORTEX1 BLOCK: S/UNI-VORTEX 1, page 2, LVDS ports.

Page 8 – S/UNI-APEX BLOCK: S/UNI-APEX 1, page 1, digital sub-blocks and power.

Page 9 – S/UNI-APEX BLOCK: S/UNI-APEX 1, page 2, RAM interfaces. The RAM size for the S/UNI-APEX is shown for exercise purposes only. The circuit supports the BGA package. The smaller size NBT (ZBT) SSRAMs may be available in TQFP packages only. The RAM size for the S/UNI-APEX should be calculated as explained in [7] and [12], depending on the system requirements.

Page 10 – S/UNI-ATLAS BLOCK: S/UNI-ATLAS 1, page 1, digital sub-blocks and power.

REFERENCE DESIGN PMC-1990815

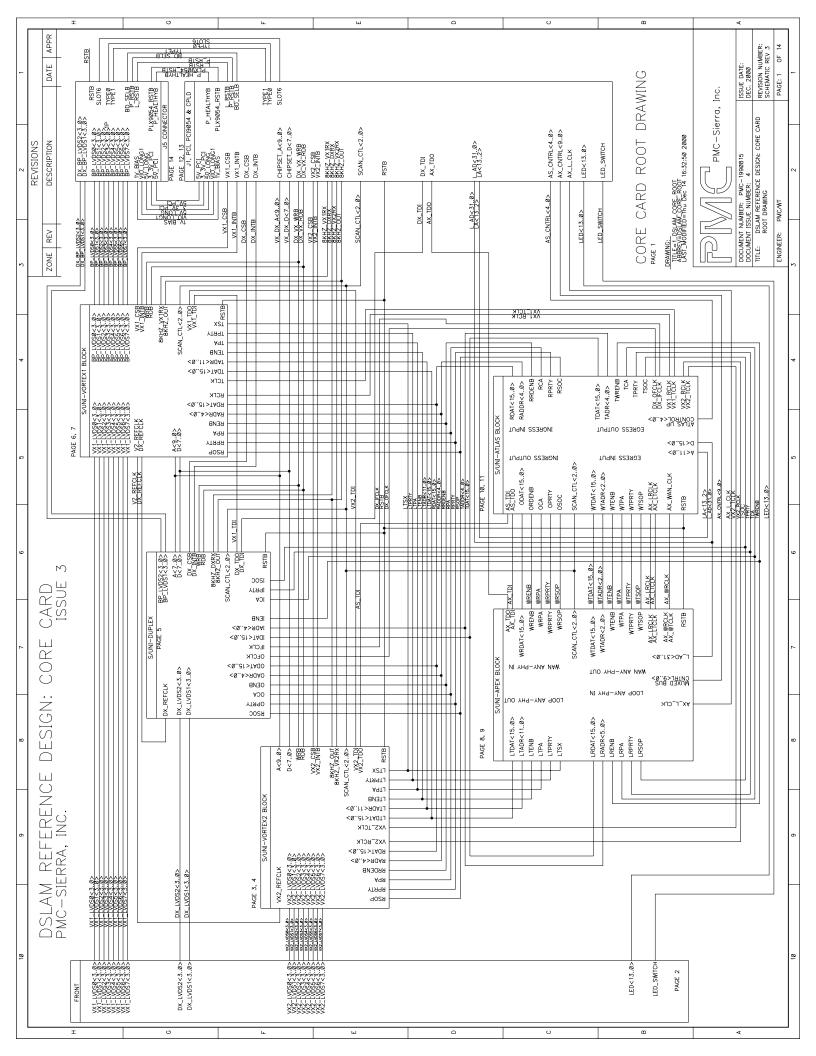


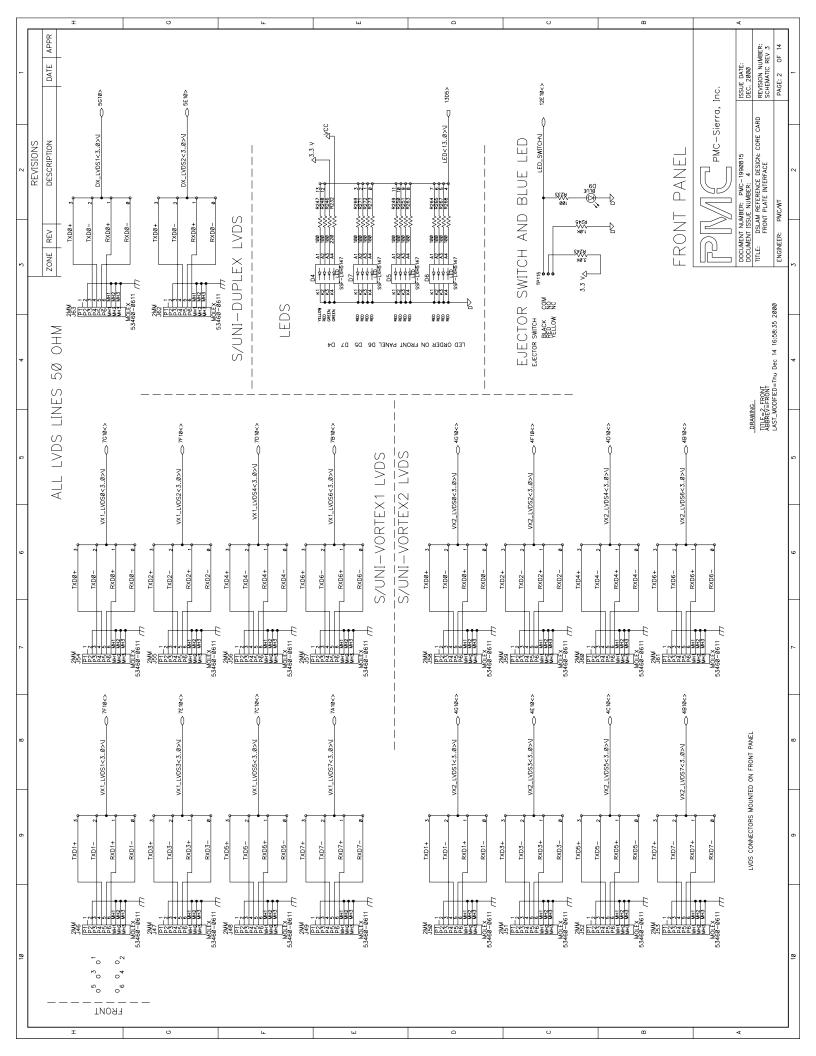
Page 11 – S/UNI-ATLAS BLOCK: S/UNI-ATLAS 2, page 2, RAM interfaces.

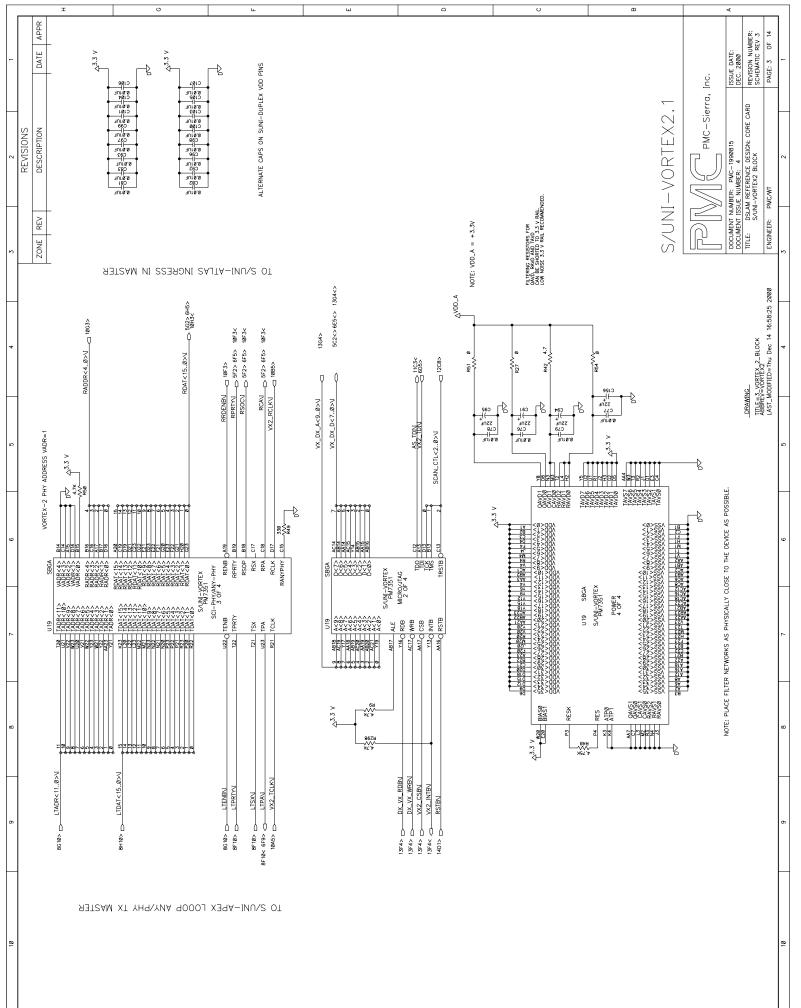
Page 12 – J1, PCI, PCI9054 & CPLD: PCI_CPLD 1, page 1, cPCI interface over J1 and PCI9054 bridge.

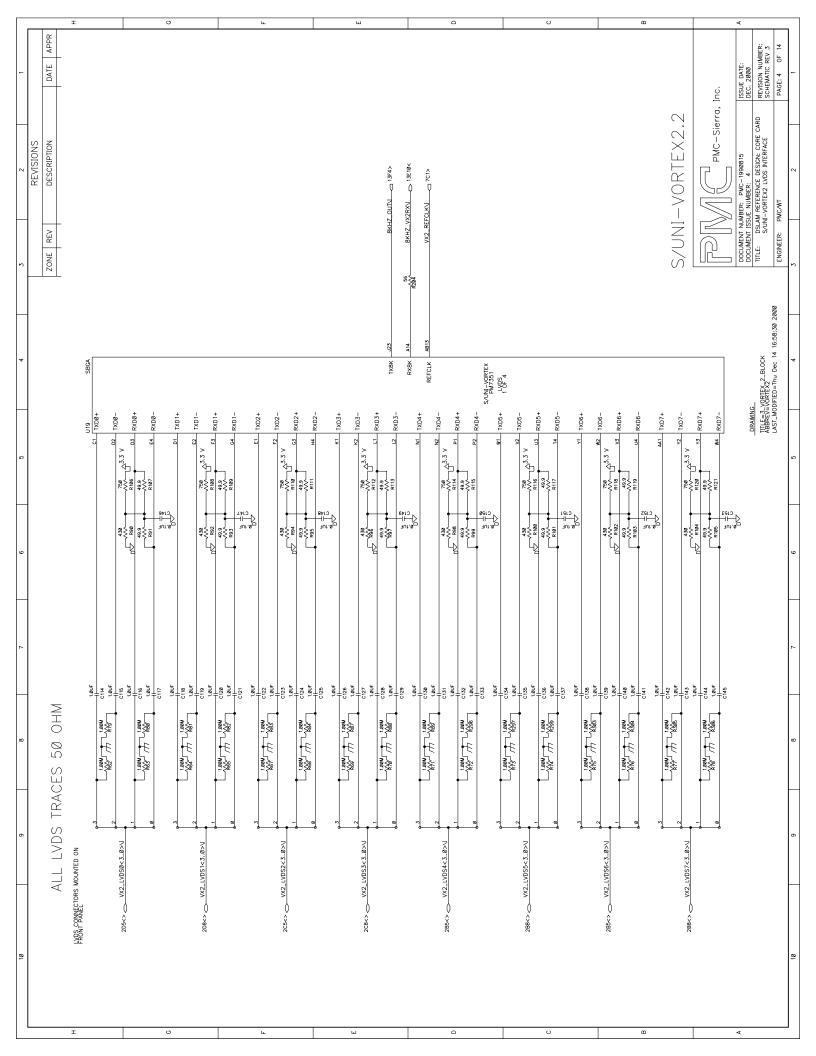
Page 13 – J1, PCI, PCI9054 & CPLD: PCI_CPLD 2, page 2, CPLD, 8 kHz PLL, test connectors.

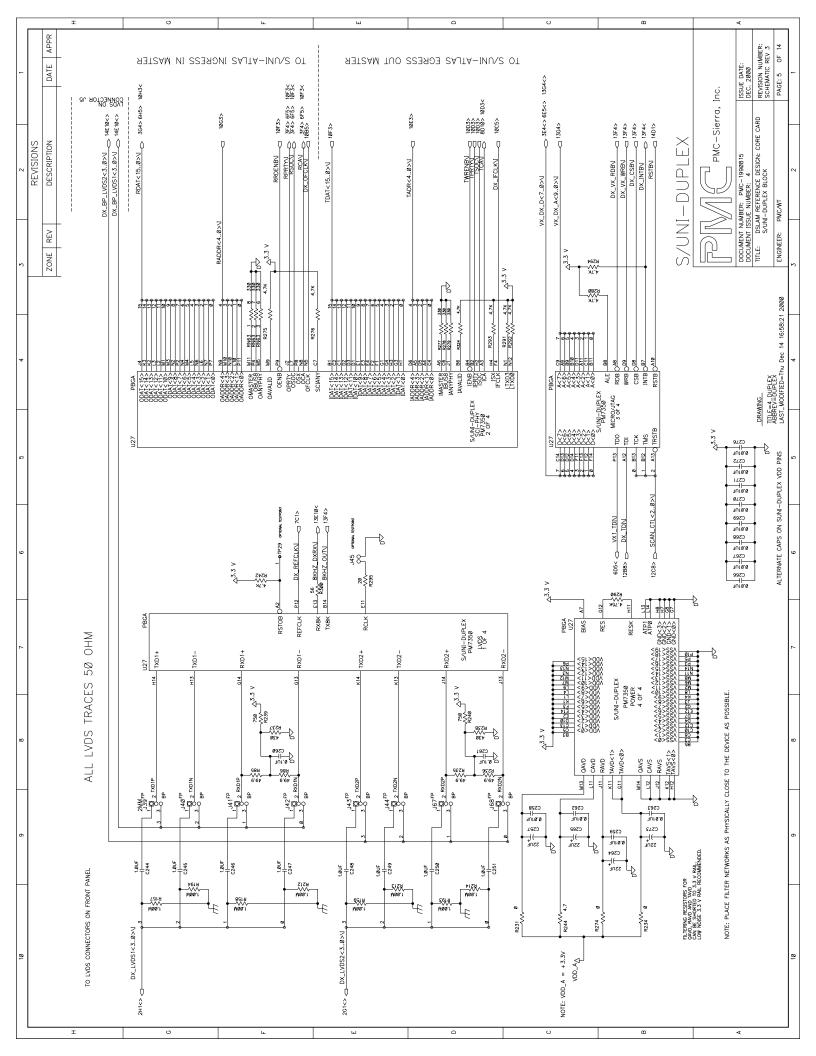
Page 14 – J5 CONNECTOR: J5 LVDS connector, Hot-Swap circuit, RESET. Resistor R200 should be decreased to 0.005 ohm to have lower voltage drop.

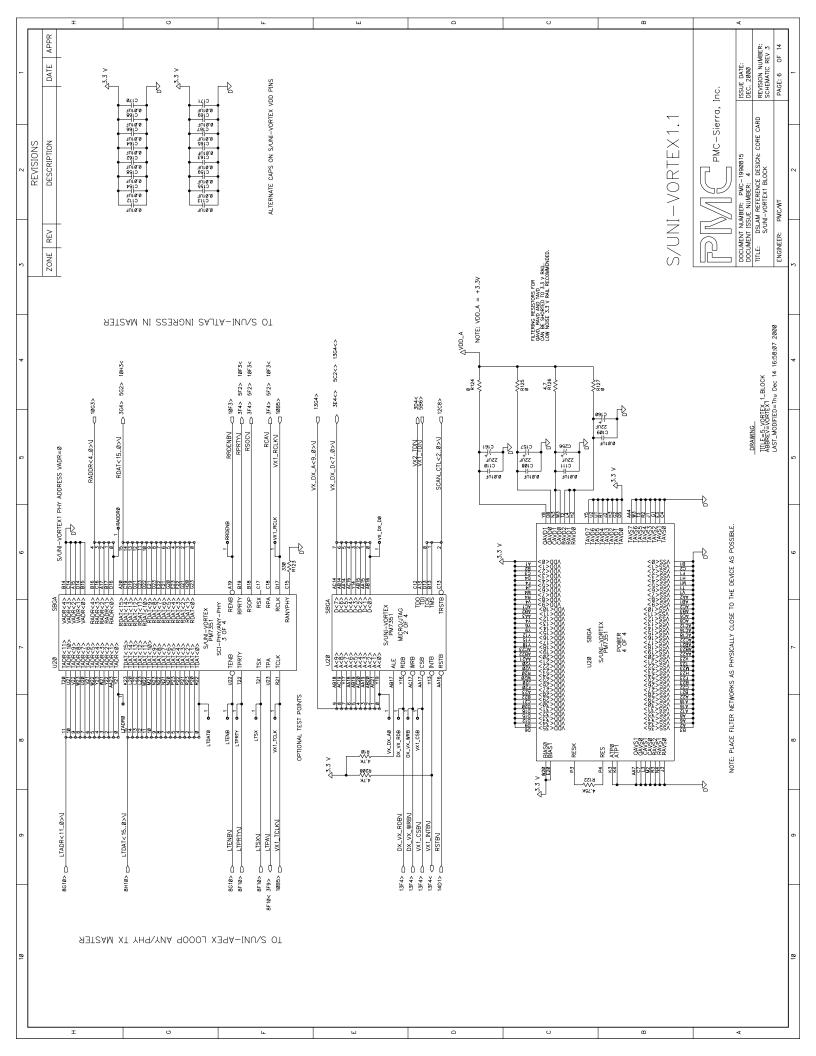

The hot swap controlling elements introduce 48.1 mV voltage drop for 3.3 V rail. . That is too close to current sensing threshold on LTC1645.

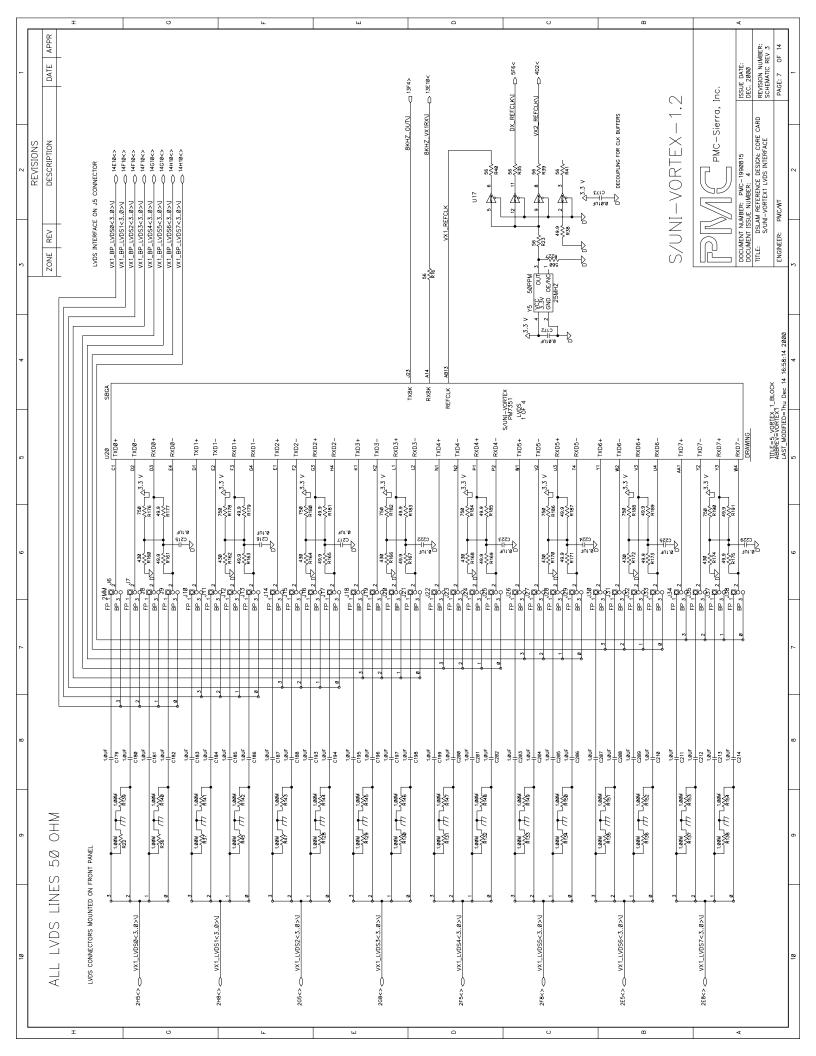

Page 15 – Signal cross-reference: Optional page helping finding netlists names.

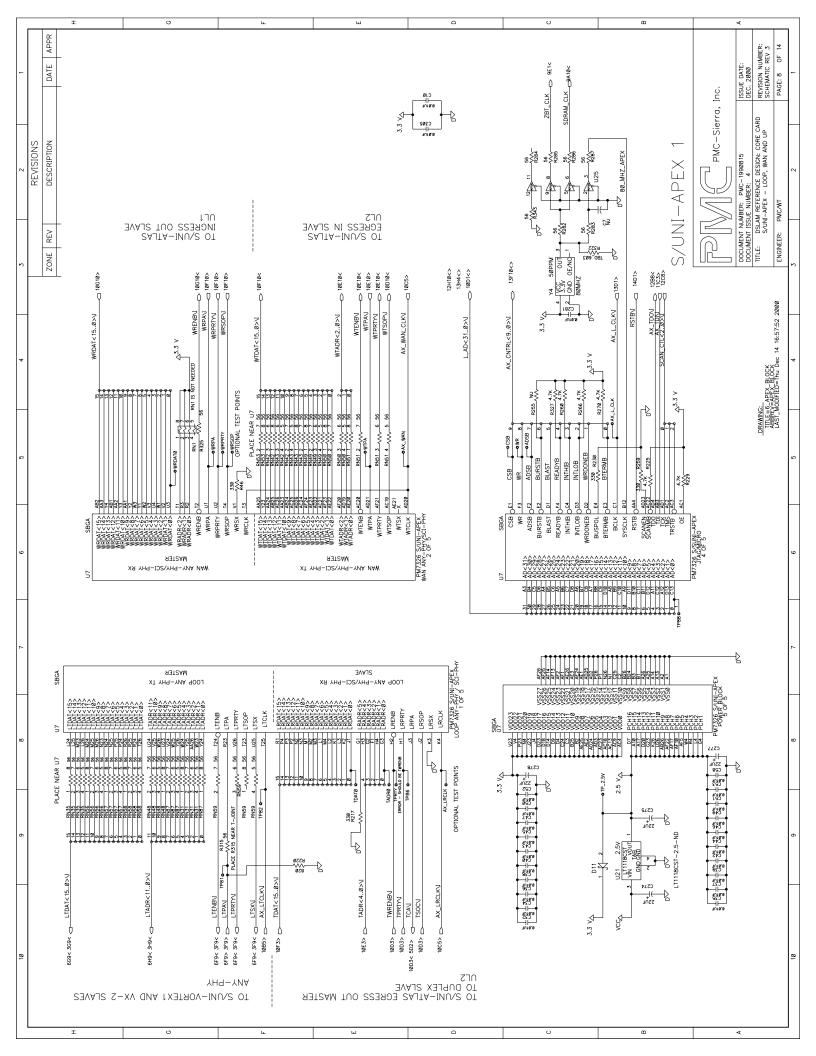

Page 16 – Component cross-reference: Optional page to help find components names.

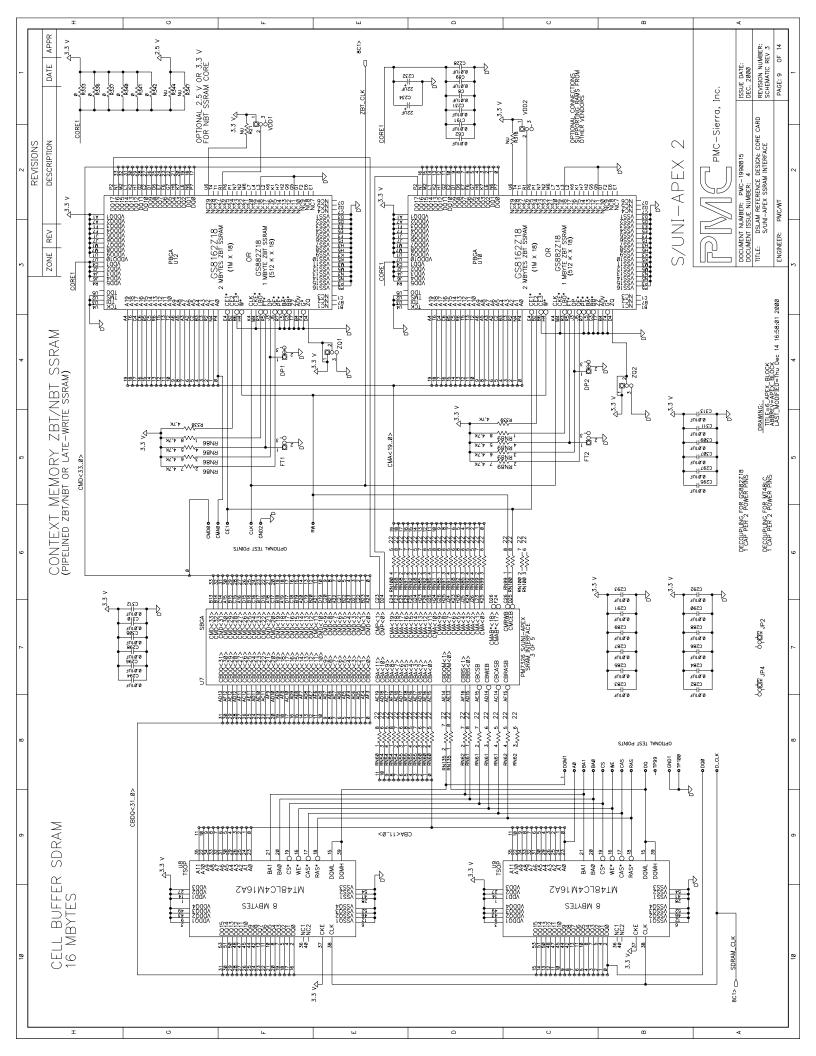

Page 17 – Component cross-reference: Optional page to help find components names.

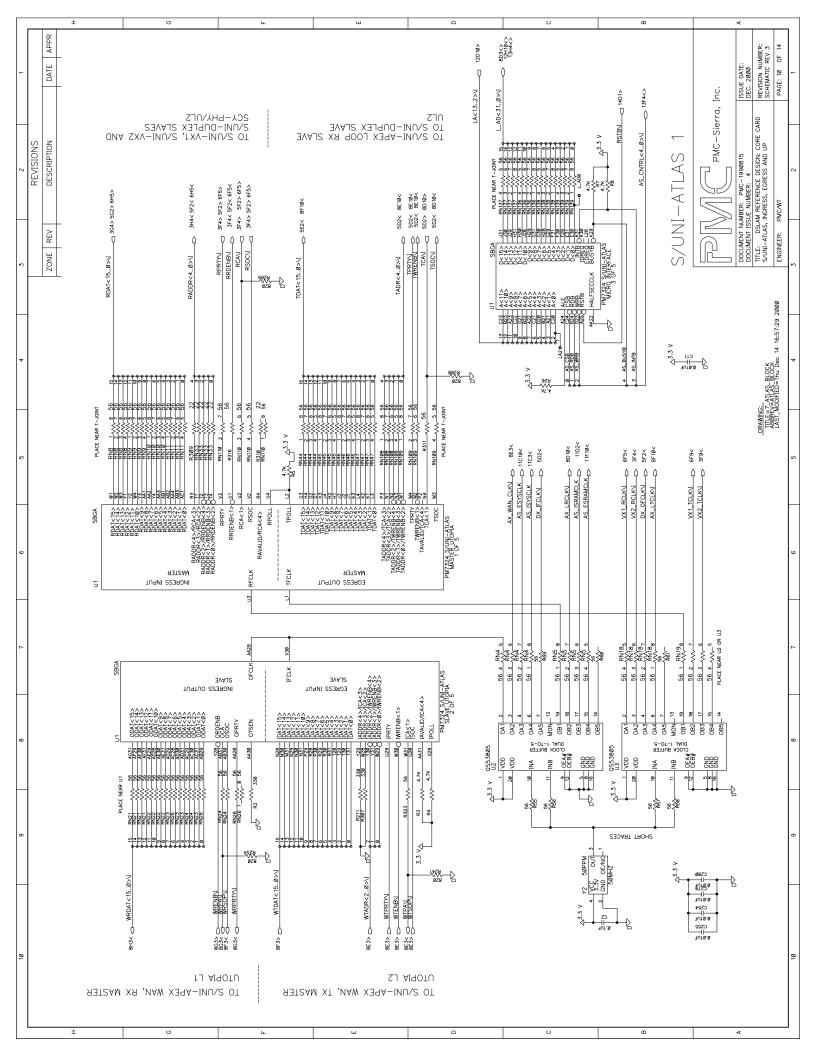

Page 18 – Component cross-reference: Optional page to help find components names.

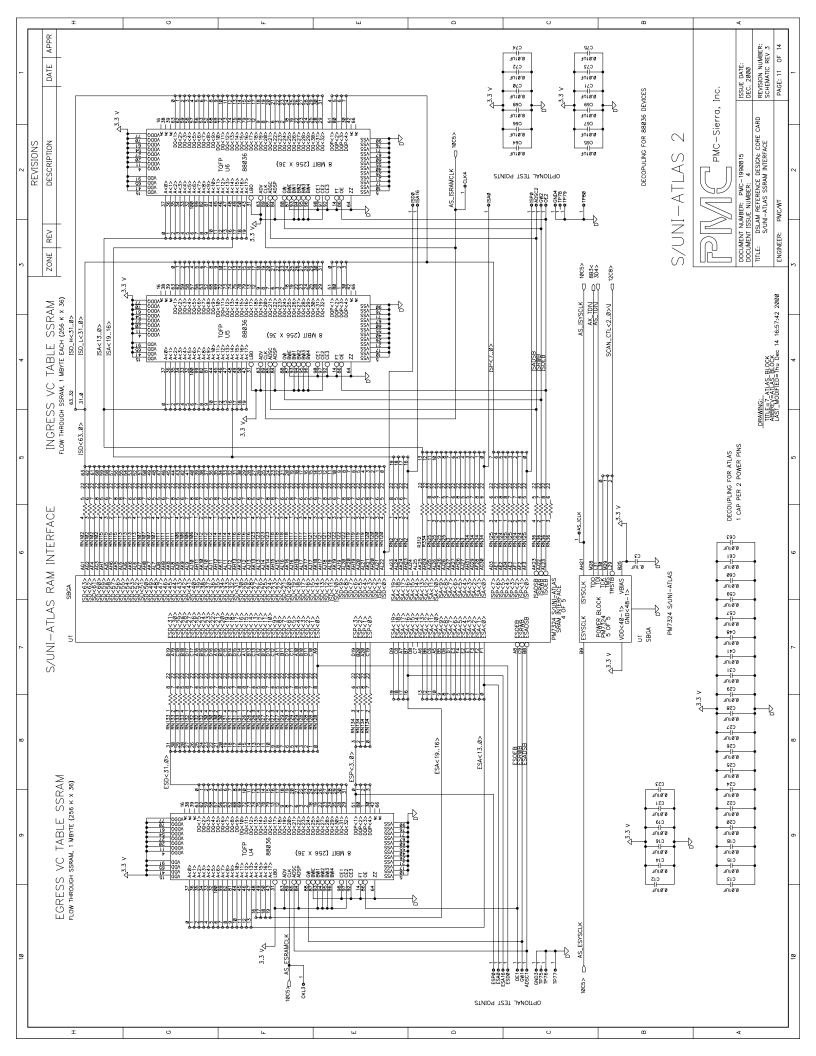


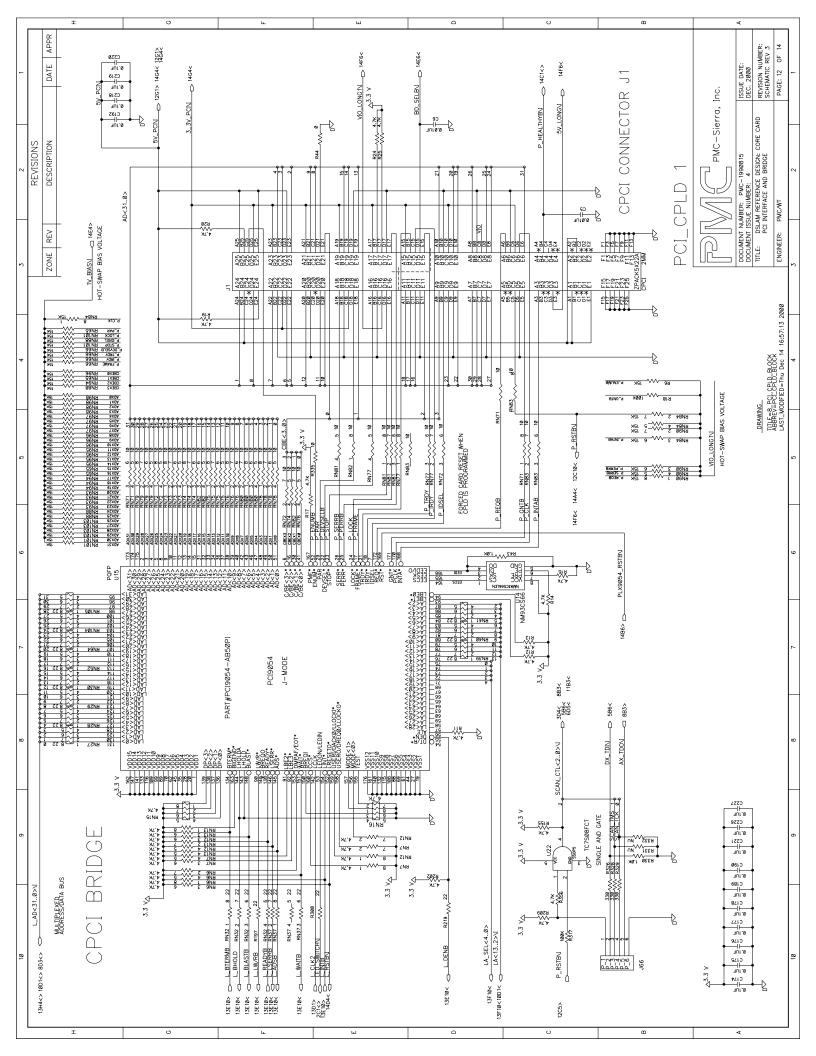


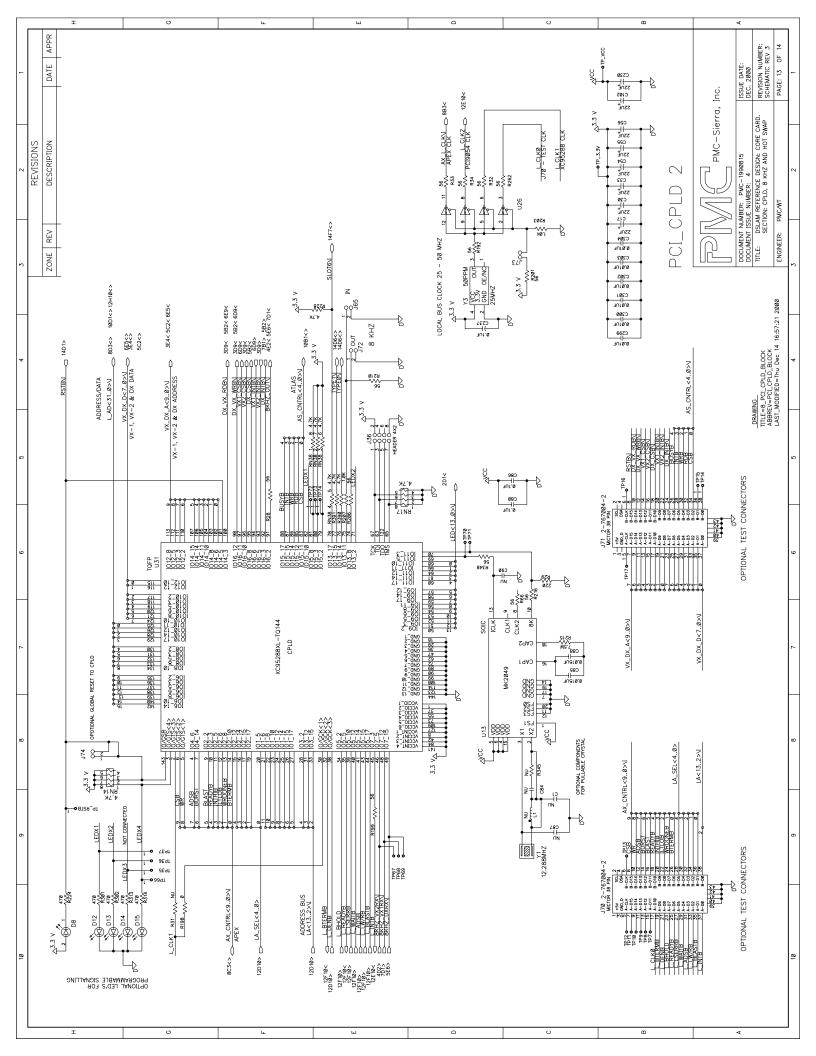


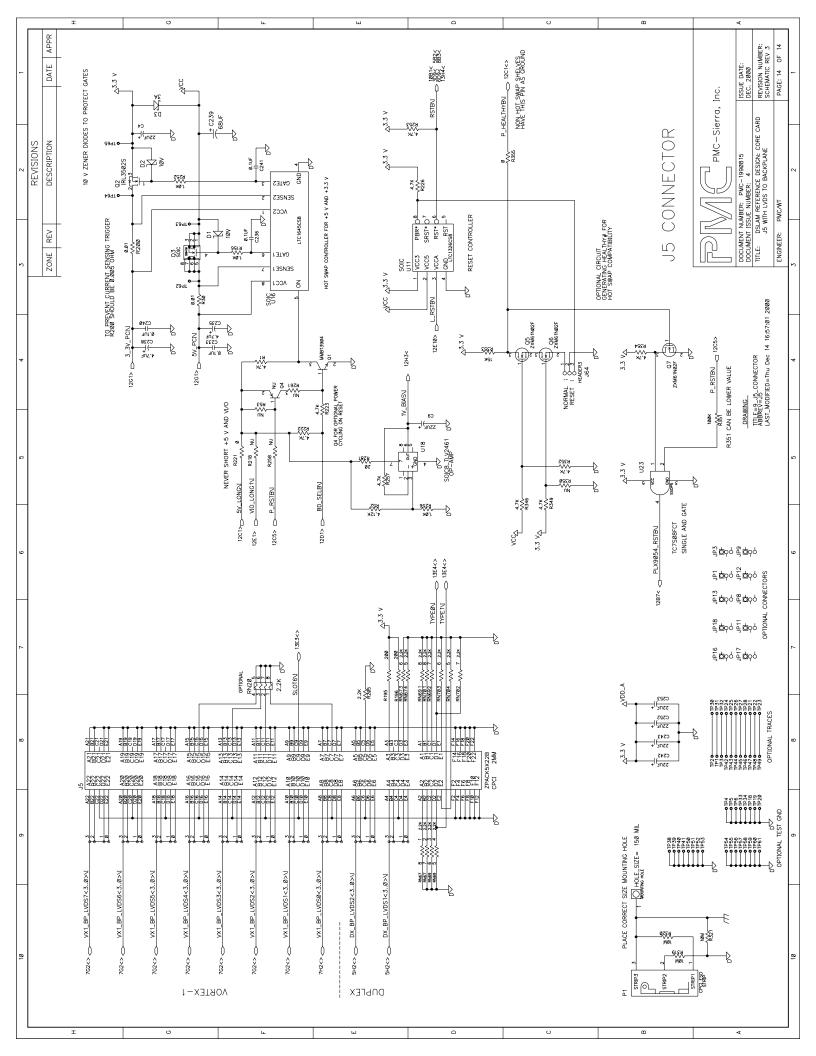












REFERENCE DESIGN PMC-1990815 PMC PMC-Sierra, Inc.

VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

21. APPENDIX H: LAYOUT

The layout section contains:

- drawing summary report
- x-y coordinates pages
- mechanical drawing page
- top component placement page
- top silk screen page
- copper layers, ten pages
- bottom silk screen page
- bottom component placement page

21.1. Drawing Summary Report

	DRAWING SUMMARY REF	Page 1
W:\pcb8\pcb\dslam_co	pre.brd	Wed May 03 11:08:26 2000
Drawing Extents XI		XU 17100.000 YU 10400.000
Package Symbols:	1115 Total 424 Mirror	red 6083 Pins
Mechanical Symbols	s: 12 Total	8 Pins
Format Symbols:		
DRC:	0 Errors	
	62 Definitions	
	ned 1558 Unassigned 0 Tc	

PMC-1990815

REFERENCE DESIGN

VORTEX CHIPSET

ISSUE 4

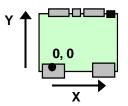
DSLAM REFERENCE DESIGN: CORE CARD

Layout Statistics:

Nets: W/Rats 1546 Pins: W/Rats 5508 Equivalent ICs (1 p	No/Rats 1	148 Unused		laced 0 Tot	al 6079			
RatTs 0 Connection Statistics: W/Rats No/Rats Total								
Connections	396	52	147	4109				
Already Connected	396	52	147	4109				
Missing Connections		0	0	0				
Dangling Connection	s (See log	gfile)		0				
Connection Completi	on 10	0.00%	100.00%	100.00%				
Manh Distance (inch	.es) 329	90.61						
Etch Length (inches) 328	31.20	23.88	3305.10				
Number of vias	4263		0	4263				
Vias per Connection		1.07	0.00	1.03				
Smd pins with attac	hed clines	5		4909				
Etch:	#connect	#shapes	#rect-	= = = = = = = #non-connect				
	lines/arcs	s (voids)	angles	lines/arcs	#text			
TOP	3869	8(0)	0	1	3			
SIG1	402	1(88)	0	1	3			
GND_PLANE	289	3(3644)	0	1	3			
3V3_PLANE	32	1(3941)	0	1	3			
SIG2	473	0(0)	0	1	3			
SIG3	395	0(0)	0	1	3			
3V3_A_PLANE	32	4(3907)	0	1	3			
GND1_PLANE	288	3(3644)	0	1	3			
SIG4	308	1(80)	0	1	3			
BOTTOM	1640	0(0)	0	1	3			
	DRAWING	SUMMARY R	EPORT		Page 2			
W:\pcb8\pcb\dslam_core.b	ord		Wed	May 03 11:0	8:26 2000			
etch totals 7	728 21(153				30			

21.2. X-Y Coordinates for Issue 3 Board

Following pages show X-Y coordinates for components placed on Issue 3 board.


VORTEX CHIPSET

REFERENCE DESIGN PMC-1990815

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

X-Y Coordinates for components on Core Card Issue 3

UUNITS = MILS (e.g. 4160 = 4.160 inch)

C ommon c = 1	v	v		C150	3350
Component	X	Y	Footprint	C151	3102.5
A0	-880		T_PAD50CIR32D	C152	2952.5
ADSC1	4160	1200 ISI_P	T_PAD50CIR32D	C153	2802.5
ADSC2	6920	1800 ISI_P	T_PAD50CIR32D	C154	6720
AS_ICLK	3365		T_PAD50CIR32D	C155	6670
AX_WAN	280		T_PAD50CIR32D	C156	3227.5
BA0	-800		T_PAD50CIR32D	C157	7045
BA1	-800		T_PAD50CIR32D	C158	5982.5
C1	3415	630	603	C159	6345
C10	4945	380	402	C16	3755
C100	3300	4300	402	C160	6282.5
C101	2950	4450	402	C161	5580
C102	2410	680	SMDTANCAP_B	C162	5995
C103	3800	3575	402	C163	6020
C104	3225	4475	402	C164	6870
C105	3125	4100	402	C165	6195
C106	3975	4475	402	C166	5770
C107	3825	3950	402	C167	6690
C108	6995	3920	402	C168	6095
C109	6320	4480	402	C169	6685
C11	4375	975	402	C17	2510
C110	5595	4020	402	C170	5820
C111	6570	4495	402	C171	6495
C112	6845	4295	402	C172	4345
C113	5995	3920	402	C173	4775
C114	2275	5612.5	SMDCAP805	C174	-12.5
C115	2350	5612.5	SMDCAP805	C175	-627.5
C116	2437.5	5612.5	SMDCAP805	C176	112.5
C117	2512.5	5612.5	SMDCAP805	C177	132.5
C118	1900	5612.5	SMDCAP805	C178	-72.5
C119	1975	5612.5	SMDCAP805	C179	6525
C12	3500	1365	402	C18	5645
C120	2062.5	5612.5	SMDCAP805	C180	6600
C121	2137.5	5612.5	SMDCAP805	C181	6687.5
C122	1525	5612.5	SMDCAP805	C182	6762.5
C123	1600	5612.5	SMDCAP805	C182	6150
C124	1687.5	5612.5	SMDCAP805	C183	6225
C125	1762.5	5612.5	SMDCAP805	C185	6312.5
C126	1150	5612.5	SMDCAP805	C185	6387.5
C127	1225	5612.5	SMDCAP805	C180 C187	5775
C128	1312.5	5612.5	SMDCAP805	C187 C188	5850
C129	1387.5	5612.5	SMDCAP805		5850 402.5
C13	4325	2425	402	C189 C19	
C130	675	5612.5	SMDCAP805	C19 C190	4100
C131	750	5612.5	SMDCAP805	0190	-172.5

C157 7045 3940 SMDTANCAP_E C158 5982.5 4095 402 C159 6345 3420 402 C16 3755 1365 402 C160 6282.5 4532.5 SMDTANCAP_E C161 5580 3990 SMDTANCAP_E C162 5995 3620 402 C163 6020 3395 402 C164 6870 3220 402 C165 6195 4115 402 C166 5770 3245 402 C166 5770 3245 402 C166 5770 3245 402 C167 6690 3770 402 C168 6095 4295 402 C170 5820 4270 402 C171 6495 4120 402 C172 4345 3650 402 C173 4775 3410 402		DSLA	M REFERENCE	DESIGN: CORE CAN
C189402.51200603C1941001725402	C133 C134 C135 C136 C137 C138 C139 C14 C140 C141 C142 C143 C144 C145 C146 C147 C148 C149 C15 C150 C151 C152 C153 C154 C155 C156 C157 C158 C155 C156 C157 C158 C159 C16 C161 C162 C163 C164 C165 C166 C167 C168 C166 C167 C170 C171 C172 C173 C174 C175 C176 C177 C178 C177 C178 C179 C181 C182 C183 C184 C182 C183 C184 C182 C183 C184 C182 C183 C184 C182 C183 C184 C185 C176 C177 C178 C177 C178 C179 C18 C183 C184 C183 C184 C185 C186 C187 C188 C181 C182 C183 C184 C183 C184 C182 C183 C184 C183 C184 C185 C176 C177 C1778 C1778 C1778 C178 C1776 C1778 C178 C183 C184 C183 C184 C185 C186 C187 C176 C177 C178 C177 C178 C177 C178 C177 C178 C177 C178 C183 C184 C183 C184 C185 C186 C187 C177 C178 C178	837.5 912.5 300 375 462.5 537.5 -75 0 3150 87.5 162.5 -450 -375 -287.5 -212.5 4052.5 3902.5 3752.5 3502.5 4650 3350 3102.5 2952.5 2802.5 6720 6670 3227.5 7045 5982.5 6325 5580 5995 6020 6870 6195 5770 6690 6095 6685 2510 5820 6495 4345 4775 -12.5 -12.5 -12.5 -12.5 -25.5 5580 5995 6020 6870 6195 5770 6690 6095 6685 2510 5820 6495 4345 4775 -12.5 -12.5 -12.5 -12.5 5645 6600 6687.5 5725 5645 6600 6687.5 5725 5645 6600 6687.5 575 5645 6600 6687.5 575 5645 6600 6225 5645 6600 6225 5645 6600 6225 5775	$\begin{array}{c} 5612.5\\ 4790\\ 4270\\ 4120\\ 3650\\ 3410\\ 785\\ 1165\\ 1795\\ 810\\ 1815\\ 5612.5\\ 5$	SMDCAP805 SMDCAP805 SMDCAP805 SMDCAP805 SMDCAP805 SMDCAP805 SMDCAP805 SMDCAP805 SMDCAP805 SMDCAP805 SMDCAP805 SMDCAP805 SMDCAP805 SMDCAP805 G03 603 603 603 603 603 603 603 603 603 6
0190 -172.5 785 603	C185 C186 C187 C188 C189	6312.5 6387.5 5775 5850 402.5	5612.5 5612.5 5612.5 5612.5 1200	SMDCAP805 SMDCAP805 SMDCAP805 SMDCAP805 603

117

PMC-1990815

ISSUE 4

VORTEX CHIPSET

0101	4005	4000	400	005	4000	4400	400
C191	1825	4300	402	C25	4800	1130	402
C192	-925	410	603	C250	3012.5	5612.5	SMDCAP805
C193	5937.5	5612.5	SMDCAP805	C251	3087.5	5612.5	SMDCAP805
C194	6012.5	5612.5	SMDCAP805	C252	7275	1825	SMDTANCAP_B
C195	5400	5612.5	SMDCAP805	C253	5510	3700	SMDTANCAP_B
C196	5475	5612.5	SMDCAP805	C254	3595	2860	402
C197	5562.5	5612.5	SMDCAP805	C255	3855	2860	402
C198	5637.5	5612.5	SMDCAP805	C256	6532.5	4532.5	SMDTANCAP_B
				C250			
C199	4925	5612.5	SMDCAP805		5221.5	4530	SMDTANCAP_B
C2	2940	2355	603	C258	5165	4550	402
C20	5200	1130	402	C259	5170	4190	402
C200	5000	5612.5	SMDCAP805	C26	5400	2225	402
C201	5087.5	5612.5	SMDCAP805	C260	4725	4650	603
C202	5162.5	5612.5	SMDCAP805	C261	4931.5	4650	603
C203	4550	5612.5	SMDCAP805	C262	5165	4430	402
C204	4625	5612.5	SMDCAP805	C263	5165	4320	402
C205	4712.5	5612.5	SMDCAP805	C264	5220	4150	SMDTANCAP_B
C206	4787.5	5612.5	SMDCAP805	C265	5221.5	4405	SMDTANCAP_B
C207	4175	5612.5	SMDCAP805	C266	4990	4450	402
C208	4250	5612.5	SMDCAP805	C267	4695	4320	402
C209	4337.5	5612.5	SMDCAP805	C268	4556.5	4100	402
C21	3750	2085	402	C269	4757	4027	402
C210	4412.5	5612.5	SMDCAP805	C27	5825	2425	402
C211	3800	5612.5	SMDCAP805	C270	4919	3960	402
C212	3875	5612.5	SMDCAP805	C271	5087.5	4164	402
	3962.5						402
C213		5612.5	SMDCAP805	C272	4911.5	4280	
C214	4037.5	5612.5	SMDCAP805	C273	5221.5	4280	SMDTANCAP_B
C215	7070	4205	603	C274	800	2900	SMDTANCAP_B
C216	7070	4550	603	C275	1350	2900	SMDTANCAP_B
C217	6810	4645	603	C276	5036.5	4040	402
C218	-825	410	603	C277	1100	3125	SMDTANCAP_B
C219	1125	300	603	C278	1325	3125	SMDTANCAP_B
C22	5725	1075	402	C279	3595	2460	402
C220	1125	200	603	C28	5645	2125	402
C221	-212.5	1815	603	C280	3855	2460	402
C222	6660	4645	603	C281	-175	5045	402
C223	6370	4585	603	C282	-270	3235	402
C224	6150	4645	603	C283	-435	4045	402
C225	6010	4645	603	C284	-450	3235	402
C226	402.5	1360	603	C285	-590	4090	402
C227	-627.5	1575	603	C286	-180	3785	402
C228	1825	3525	402	C287	-900	4595	402
C229	5860	4645	603	C288	-630	3230	402
C223	3495	2085	402	C289	-165		
				0269		4045	402
C230	2750	800	SMDTANCAP_B	C29	5725	2325	402
C231	2125	4300	402	C290	-920	3780	402
C232	1970	3140	SMDTANCAP_B	C291	-165	4590	402
C233	1200	0	603	C292	-450	3785	402
C234	1965	3920	SMDTANCAP_B	C293	-435	4590	402
C235	1100	25	SMDTANCAP B	C294	1750	3675	402
C236	3605	260	603	C295	2555	4150	402
C237	1510	2830	603	C296	2200	3600	402
C238	1215	455	SMDTANCAP_B	C297	2205	4370	402
C239	382.5	2645	NEC_D	C298	2300	3400	402
C24	4475	1075	402	C299	1830	2040	402
C240	1125	425	603	C3	4230	2175	603
C241	3705	255	603	C30	6045	675	SMDTANCAP_B
C242	2090	5	SMDTANCAP_B	C300	1485	2045	402
C243	7205	3260	SMDTANCAP_B	C301	1430	1090	402
C244	3225	5612.5	SMDCAP805	C302	2300	1437.5	402
C245	3300	5612.5	SMDCAP805	C303	1820	1060	402
C246	3387.5	5612.5	SMDCAP805	C304	1295	1770	402
C247	3462.5	5612.5	SMDCAP805	C305	595	5190	402
C248	2850	5612.5	SMDCAP805	C307	2295	4190	402
C249	2925	5612.5	SMDCAP805	C308	2555	3375	402

PMC-1990815

ISSUE 4

C309	1750	4100	402	C86	3075	1000	603
C31	5550	1130	402	C87	3505	875	603
C310	1745	3320	402	C88	2850	885	SMDCAP1206
C310	2545	4455	402	C89	2425	3525	402
C312	2550	3685	402	C9	600	500	SMDTANCAP B
C312 C313	1750	4450	402	C90	2935	1160	SMDCAP805
C313	375	3925	402	C90	4195	4125	SMDTANCAP_B
C32 C33	-200	2600	SMDTANCAP_B	C91	4000	3400	402
C34	775	3480	402	C92 C93	3600	4320	402
C34 C35	975	3220	402	C93 C94	3627.5	4320	SMDTANCAP_B
C36	1025	4325	402	C95	2700	4150	SMDTANCAP_B
C30 C37	120	3475	402	C95	3475	3600	402
C38	1375	4500	402	C90 C97	3150	3575	402
C39	1220	4230	402	C98	3125	3800	402
C4	1915	5	SMDTANCAP_B	C99	3100	4275	402
C40	375	3675	402	CAS	-640		_PT_PAD50CIR32D
C40 C41	5000	2225	402	CE1	2440		_PT_PAD50CIR32D
C42	525	4325	402	CKL3	4165		_PT_PAD50CIR32D
C42	575	4325	402	CLK	2200		_PT_PAD50CIR32D
C44	925	4325	402	CLK4	7000		PT PAD50CIR32D
C45	225	4500	402	CMA0	2360		_PT_PAD50CIR32D
C46	1460	4100	402	CMD0	2120		PT PAD50CIR32D
C40 C47	1220	4125	402	CS	-720		PT PAD50CIR32D
C48	4550	1575	402	D1	2205	750	SOD323
C49	625	3220	402	D11	-25	3050	SMC_2
C5	-860	450	402	D12	2225	2350	LED_11
C50	1350	3325	402	D13	2095	2350	LED_11
C51	1125	3480	402	D13	1965	2350	LED_11
C52	225	3350	402	D15	1835	2350	LED_11
C53	1455	3695	402	D10 D2	1490	-25	SOD323
C54	4130	2765	SMDTANCAP_B	D3	2530	310	SMC_2
C55	-350	4900	SMDTANCAP_B	D4	7575	6017.5	SSF-LXH5147
C56	2725	2675	SMDTANCAP_B	D5	7175	6017.5	SSF-LXH5147
C57	4550	1975	402	D6	6975	6017.5	SSF-LXH5147
C58	120	4075	402	D7	7375	6017.5	SSF-LXH5147
C59	4425	2325	402	D8	2355	2350	LED_11
C6	2825	190	402	D9	-625	5840	LED_5MM
C60	4550	1225	402	DP1	2270		PER_3PIN_INLINE
C61	5645	1575	402	DP2	2020		PER_3PIN_INLINE
C62	2425	4300	402	DQ	-560		PT_PAD50CIR32D
C63	5825	975	402	DQ0	25		PT_PAD50CIR32D
C64	6570	2610	402	DX VX R			PT_PAD50CIR32D
C65	6225	1375	402	DX_VX_W			PT_PAD50CIR32D
C66	6825	2610	402	ESÃ0	4070		_PT_PAD50CIR32D
C67	6830	1015	402	ESA16	4070		PT_PAD50CIR32D
C68	6570	1890	402	ESD0	4070	1280 TST	_PT_PAD50CIR32D
C69	6415	1735	402	ESP0	4070		_PT_PAD50CIR32D
C7	260	5190	SMDCAP805	FT1	2145	4485 JUM	PER_3PIN_INLINE
C70	7180	2250	402	FT2	2735	3575 JUM	PER_3PIN_INLINE
C71	7175	1375	402	GND1	-560	3880 TST	_PT_PAD50CIR32D
C72	6830	1890	402	GND2	2520	3920 TST	_PT_PAD50CIR32D
C73	6570	1015	402	GND3	3075	1925 TST	_PT_PAD50CIR32D
C74	6225	2250	402	GND4	6680	1800 TST	_PT_PAD50CIR32D
C75	6980	1735	402	GW1	4160	1370 TST	_PT_PAD50CIR32D
C76	4150	4100	402	GW2	6760	1800 TST	_PT_PAD50CIR32D
C77	3265	4690	402	ISA0	6520		_PT_PAD50CIR32D
C78	2750	4175	402	ISA16	6440		_PT_PAD50CIR32D
C79	3665	4690	402	ISD0	6600		_PT_PAD50CIR32D
C8	2150	3550	402	J1	0	88.583 ZP	ACK5X22FH_ASCPCI
C80	3450	950	603	J10	7370.496	4284.5	HEADER3_2MM
C81	2900	3400	402	J11	7370.496	4205.5	HEADER3_2MM
C82	3850	3825	402	J12	7370.496	4482	HEADER3_2MM
C83	3850	4275	402	J13	7370.496	4403	HEADER3_2MM
C84	3565	730	SMDCAP805	J14	7420.5	4920.496	HEADER3_2MM
C85	2950	885	SMDCAP1206	J15	7499.5	4920.496	HEADER3_2MM

PMC-1990815

REFERENCE DESIGN

ISSUE 4

VORTEX CHIPSET

J16	7223	4020 406	HEADER3 2MM	JP12	7115	1900 11 11/1	PER_3PIN_INLINE
J17	7302	4920.496 4920.496	HEADER3_2MM	JP12 JP13	5590		PER_3PIN_INLINE
J18	7025.5	4920.496	—	JP16	580		PER_3PIN_INLINE
J19	7025.5	4920.496	HEADER3_2MM HEADER3_2MM	JP17	4395		PER_3PIN_INLINE
J20	6828		—	JP18	4395 5		PER_3PIN_INLINE
		4920.496	HEADER3_2MM				
J21	6907 6000 F	4920.496	HEADER3_2MM	JP2	1780		PER_3PIN_INLINE
J22	6630.5	4920.496	HEADER3_2MM	JP3	2220		PER_3PIN_INLINE
J23	6709.5	4920.496	HEADER3_2MM	JP4	1785		PER_3PIN_INLINE
J24	6433	4920.496	HEADER3_2MM	JP8	6450		PER_3PIN_INLINE
J25	6512 6325 5	4920.496	HEADER3_2MM	JP9	1325		PER_3PIN_INLINE
J26	6235.5	4920.496	HEADER3_2MM	L1	3485	600	SMDCAP1206
J27	6314.5	4920.496	HEADER3_2MM	LA2	4195		PT_PAD50CIR32D
J28	6038	4920.496	HEADER3_2MM	LTADR0	5900		PT_PAD50CIR32D
J29	6117	4920.496	HEADER3_2MM	LTENB	6060		PT_PAD50CIR32D
J30	5840.5	4920.496	HEADER3_2MM	M1	7868.11		AOUNT_HOLE_150
J31	5919.5	4920.496	HEADER3_2MM	OE1	4160	-	_PT_PAD50CIR32D
J32	5643	4920.496	HEADER3_2MM	OE2	6840		_PT_PAD50CIR32D
J33	5722	4920.496	HEADER3_2MM	P1	-917.322	3006.889	CPCI_ESD_STRIP
J34	5445.5	4920.496	HEADER3_2MM	Q1	3100	125	SOT23
J35	5524.5	4920.496	HEADER3_2MM	Q2	1715	292.5	D2PAK
J36	995	895	HEADER_4X2	Q3	2235	520	SO8NB-3
J37	5248	4920.496	HEADER3_2MM	Q4	3100	325	SOT23
J38	5327	4920.496	HEADER3_2MM	Q5	-50	1315	SOT23
J39	4487	4950.496	HEADER3_2MM	Q6	-195	1350	SOT23
J40	4566	4950.496	HEADER3_2MM	Q7	135	1300	SOT23
J41	4289.5	4950.496	HEADER3_2MM	R1	3100	225	603
J42	4368.5	4950.496	HEADER3_2MM	R10	5580	3495	603
J43	4882	4950.496	HEADER3_2MM	R100	3140	4690	603
J44	4961	4950.496	HEADER3_2MM	R101	3140	4690	603
J45	4250	4450	HEADER_2	R102	2990	4690	603
J46	6265	5944	MOLEX53460_0611	R103	2990	4690	603
J47	5515	5944	MOLEX53460_0611	R104	2765	4690	603
J48	4665	5944	MOLEX53460_0611	R105	2840	4690	603
J49	3915	5944	MOLEX53460_0611	R106	4090	4690	603
J5	7100.394	88.583 ZP	ACK5X22FH_BSCPCI	R107	4015	4690	603
J50	2015	5944	MOLEX53460_0611	R108	3865	4690	603
J51	1265	5944	MOLEX53460_0611	R109	3865	4690	603
J52	415	5944	MOLEX53460_0611	R11	545	1115	603
J53	-335	5944	MOLEX53460_0611	R110	3715	4690	603
J54	6640	5944	MOLEX53460_0611	R111	3715	4690	603
J55	5890	5944	MOLEX53460_0611	R112	3540	4690	603
J56	5040	5944	MOLEX53460_0611	R113	3465	4690	603
J57	4290	5944	MOLEX53460_0611	R114	3315	4690	603
J58	2390	5944	MOLEX53460_0611	R115	3315	4690	603
J59	1640	5944	MOLEX53460_0611	R116	3065	4690	603
J6	7370.496	3889.5	HEADER3_2MM	R117	3065	4690	603
J60	790	5944	MOLEX53460_0611	R118	2915	4690	603
J61	40	5944	MOLEX53460_0611	R119	2915	4690	603
J62	2965	5944	MOLEX53460_0611	R12	397.5	2025	603
J63	3340	5944	MOLEX53460_0611	R120	2840	4690	603
J64	-825	587.5	JUMPER3	R121	2765	4690	603
J65	2775	1350	HEADER_2	R122	6257.5	4057.5	603
J66	5300	475	SIP6	R123	6645	3632.5	603
J67	4684.5	4950.496	HEADER3_2MM	R124	5595	3970	603
J68	4763.5	4950.496	HEADER3_2MM	R125	6995	3970	603
J7	7370.496	3810.5	HEADER3_2MM	R126	6530	4500	603
J70	925	1850	MICTOR_38_PIN	R127	6270	4520	SMDRES805
J71	2650	1950	MICTOR_38_PIN	R128	5937.5	5637.5	603
J72	2775	1125	HEADER_2	R129	5400	5637.5	603
J73	2080	3030	HEADER 2	R13	342.5	2025	603
J74	2210	2525	HEADER_2	R130	5562.5	5637.5	603
J8	7370.496	4087	HEADER3 2MM	R131	4925	5637.5	603
J9	7370.496	4008	HEADER3 2MM	R132	5087.5	5637.5	603
JP1	-785		PER_3PIN_INLINE	R133	4550	5637.5	603
JP11	6715		PER_3PIN_INLINE	R134	4712.5	5637.5	603
••							

_

REFERENCE DESIGN

VORTEX CHIPSET

R135 4175 5637.5 603 R194 3300 5637.5 603 R136 4307.5 5637.5 603 R196 6475 425 603 R139 6600 5637.5 603 R197 542.5 202.5 603 R140 6762 5637.5 603 R198 1237.5 1382.5 603 R140 6762.5 5637.5 603 R20 1100 175 603 R141 625.5 5637.5 603 R201 1385 430 POWERES_2714 R144 646.5 5637.5 603 R201 1385 430 POWERES_2714 R144 646.5 5637.5 603 R202 6250 425 603 R144 647.6 5637.5 603 R204 4125 5637.5 603 R144 647.6 225 633 R208 6020 372.0 603 R144 647.5 <td< th=""><th></th><th colspan="3">REFERENCE DESIGN PMC-1990815</th><th colspan="4">ISSUE 4 DSLAM REFERENCE DESIGN: COR</th><th>E DESIGN: CORE CARD</th></td<>		REFERENCE DESIGN PMC-1990815			ISSUE 4 DSLAM REFERENCE DESIGN: COR				E DESIGN: CORE CARD
R136 4337.5 603 R196 6475 425 603 R137 3800 5637.5 603 R197 452.5 2025 603 R138 3862.5 5637.5 603 R198 1237.5 1327.5 1328.5 603 R144 -576 2857.5 603 R199 1237.5 1327.5 1328.5 603 R144 6572.5 5637.5 603 R20 1327.5 1327.5 603 R144 6625 5637.5 603 R201 2201 2205 603 R144 6025.5 5637.5 603 R203 2375 700 603 R144 6162.5 5637.5 603 R205 2375 1050 603 R144 6162.5 5637.5 603 R209 4255 438 603 R144 6162.5 5637.5 603 R211 2755 1050 603 R144 5162	R135	4175	5637 5	603		R194	3300	5637 5	603
R137 3800 5637.5 603 R197 482.5 2025 603 R139 6600 6637.5 603 R198 1237.5 1392.5 603 R144 -575 2625 603 R199 1237.5 1392.5 603 R140 6782.5 5637.5 603 R20 1385 430 POWERES_2714 R141 6175.5 603 R200 1385 430 POWERES_2714 R144 6016.5 5637.5 603 R201 280.5 603 R144 6016.5 5637.5 603 R204 600 425 603 R144 6017.5 5637.5 603 R204 6125 613 125 603 R144 5637.5 603 R204 125 613 126 603 R144 51637.5 603 R216 2375 125 603 127 603 R144 4625 5637.5<									
R138 3962.5 5637.5 603 R197 452.5 2025 603 R144 -676 262.5 603 R198 1237.5 1327.5 1328.5 603 R144 -676.2 5637.5 603 R20 1325.4 3126.5 603 R141 6225 5637.5 603 R201 1285.4 30.0 POWERRES_2714 R144 5657.5 5637.5 603 R201 225.0 312.5 603 R144 5637.5 5637.5 603 R201 227.6 105.0 603 R144 5462.5 5637.5 603 R203 237.5 105.0 603 R144 5462.5 5637.5 603 R204 412.5 603 82.6 47.6 603 R144 4562.5 5637.5 603 R210 237.5 105.0 603 R144 4562.5 5637.5 603 R211 275.5 125.0									
P139 6600 5637.5 603 P198 1237.5 132.6 603 R140 6762.5 5637.5 603 R2 5360 2150 603 R141 6225 5637.5 603 R20 1385 430 POWERES_2714 R142 6387.5 603 R201 1280 3025 603 R144 6012.5 6537.5 603 R202 280 1105 603 R144 6012.5 6537.5 603 R202 2875 125 603 R144 6012.5 6537.5 603 R206 6650 303 210 7700 603 R149 4625 5637.5 603 R206 6670 3720 603 813 R144 4037.5 5637.5 603 R211 2755 1350 603 813 R144 4037.5 5637.5 603 R211 2755 1350 603 813									
Pi14 475 2625 603 Pi19 127.5 1267.5 603 R144 6325 5637.5 603 R20 1100 175 603 R144 6327.5 6637.5 603 R201 1286 430 POWERES_2714 R143 5850 6637.5 603 R201 2280 3025 603 R144 567.5 5637.5 603 R203 2375 2700 603 R145 547.5 5637.5 603 R204 4125 3825 603 R146 5657.5 603 R206 2575 1050 603 R148 5162.5 5637.5 603 R210 2775 1350 603 R149 4255 5637.5 603 R211 2275 1350 603 R153 3875 5637.5 603 R213 2925 5637.5 603 R154 4055 5637.5 603									
Pi40 6762.5 6637.5 603 R2 5360 P150 603 R142 6387.5 6637.5 603 R200 1385 430 POWERES_2714 R143 5680 6537.5 603 R201 2280 3025 603 R144 6012.5 6637.5 603 R202 680 1106 603 R144 6012.5 6637.5 603 R204 4125 3825 603 R144 5016.2.5 6637.5 603 R204 4125 3825 603 R147 5000 5637.5 603 R206 2575 1050 603 R150 477.5 5637.5 603 R211 2755 4355 603 R151 422.5 5637.5 603 R211 2376.5 5637.5 603 R152 4412.5 5637.5 603 R21 2376.5 5637.5 603 R152 442.5									
R141 6225 6637.5 603 R20 1100 175 603 R143 5850 5637.5 603 R201 2250 3025 603 R144 567.5 5637.5 603 R203 2375 2700 603 R145 567.5 5637.5 603 R204 4125 5825 603 R146 5657.5 603 R204 4125 5850 603 R147 5000 5637.5 603 R207 2575 1125 603 R148 512.5 603 R207 2575 1050 603 R150 477.5 2637.5 603 R211 2755 4395 603 R152 4637.5 6637.5 603 R211 2575 1550 603 R152 4637.5 6637.5 603 R214 2975 6537.5 603 R154 4055 5537.5 603 R213									
P142 6387.5 603 P200 1385 430 POWERRES_2714 R144 6012.5 5637.5 603 R202 680 1105 603 R144 6012.5 5637.5 603 R202 680 1105 603 R146 5647.5 6637.5 603 R204 4125 382.5 603 R147 5000 5637.5 603 R206 2575 1050 603 R148 4625 5637.5 603 R208 6020 3720 603 R150 478.5 5637.5 603 R210 2575 1350 603 R151 442.5 5637.5 603 R211 2575 1350 603 R152 441.25 5637.5 603 R214 2365 5637.5 603 R154 403.7 5637.5 603 R214 2365 5637.5 603 R154 403.7 5637.5 603						R20			
P143 5850 5637.5 603 P201 2250 302 603 P144 6012.5 5637.5 603 P203 2375 270 603 P146 5637.5 603 R203 2375 2375 603 P147 5000 5637.5 603 R206 6257 1050 603 P144 6162.5 5637.5 603 R206 2575 1125 603 P144 4625 5637.5 603 R209 4925 475 603 P151 4250 5637.5 603 R211 2725 4395 603 P154 4412.5 5637.5 603 R211 2725 5637.5 603 P154 4425.3 5637.5 603 R214 3087.5 563 603 R214 3087.5 603 P154 4425.3 5637.5 603 R214 3087.5 603 R216 7760 603									
P1446012.56637.5603P202680110603P14664755637.5603P2044125322.5603P14750005637.5603P206257.5101.0603P148462.55637.5603P206257.5112.5603P149462.55637.5603P206257.5112.5603P149462.55637.5603P208602.037.20603P150478.55637.5603P21.6272.5435.5603P151425.05637.5603P21.1275.2135.0603P1524412.55637.5603P21.1275.25637.5603P154403.75637.5603P21.1275.25637.5603P154403.55637.5603P21.43087.55637.5603P156328.55637.5603P21.43087.55637.5603P1583387.55637.5603P21.43087.5603P21.4P16170694063.5603P21.4202.55637.5603P16170694063.5603P22.2P25.572.5603P16170194063.5603P22.2225.525.3603P164677.0457.5603P22.225.5603.1P165645.4450.6603P22.2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>—</td>									—
Pit4s 6475 5637.5 603 Pi203 2375 2700 603 Pi147 5000 5637.5 603 R205 6550 4.25 603 Pi148 5152.5 5637.5 603 R206 2575 1150 603 R149 4625 5637.5 603 R207 2575 1125 603 R150 4757.5 5637.5 603 R210 2575 1350 603 R151 4250 5637.5 603 R211 2725 2150 603 R153 3975 5637.5 603 R211 2757 1350 603 R154 4037.5 5637.5 603 R212 3462.5 5637.5 603 R155 4825 350 603 R214 3087.5 5637.5 603 R156 3605 135 603 R214 3007 1275 603 R156 3620 357.5									
P1466637.5603P204P142322603P14750005637.5603R20625751012603P14846255637.5603R20725751125603P14946255637.5603R20860203720603P1504787.55637.5603R21427254350603P151442.55637.5603R2125752150603P152441.25637.5603R21425752150603P154403.55537.5603R21423755637.5603P154403.55537.5603R2142367.55637.5603P1563387.55637.5603R2142367.55637.5603P1583387.55637.5603R2142367.55637.5603P15928505637.5603R21423655637.5603P16170694063.5603R2142365837.5603P16170694063.5603R22423565637.5603P16467704575603R2242355256.7603P165450603R2242355257.5603P16666204590603R2242355256.0603P16766554550603R2242355603824P1									
R147 5000 6637.5 603 R205 6550 425 603 R148 6162.5 6637.5 603 R207 257.5 1125 603 R15 -67.5 252.5 603 R209 492.5 47.6 603 R150 478.7.5 6637.5 603 R210 257.5 1350 603 R151 442.5 5637.5 603 R212 27.5 1350 603 R153 387.5 5637.5 603 R212 3462.5 5637.5 603 R154 4037.5 5637.5 603 R214 3087.5 5637.5 603 R156 3605 135 603 R214 3080 127.5 603 R157 3287.5 5637.5 603 R214 3080 127.5 603 R158 3387.5 5637.5 603 R214 2760 300 603 R161 70169 4063.5 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
R148 5162.5 6637.5 603 R206 257.5 1125 603 R149 462.5 6637.5 603 R208 6020 37.20 603 R150 4787.5 5637.5 603 R208 6020 37.20 603 R151 4787.5 5637.5 603 R21 2725 4395 603 R152 4412.5 5637.5 603 R211 5275 1350 603 R154 4037.5 5637.5 603 R213 2405.5 5637.5 603 R156 3605 135 603 R216 2006 835 SMDES805 R157 3225 5637.5 603 R217 1100 4725 603 R160 7059 4063.5 603 R218 2300 603 603 R161 7019 4063.5 603 R222 252.5 603 603 R161 7019 4061.6									
Pi149 4625 6637.5 603 P207 257.5 1125 603 R150 478.5 6637.5 603 P209 4925 475. 603 R151 4250 5637.5 603 P210 257.5 1350 603 R152 4412.5 5637.5 603 P210 257.5 1350 603 R154 4037.5 5637.5 603 P212 3462.5 5637.5 603 R156 4025 350 603 P214 3087.5 6637.5 603 R156 3605 135 603 P214 3080 127.5 603 R157 3225 5637.5 603 P214 300 427.5 603 R158 3387.5 5637.5 603 P216 3300 127.5 603 R160 7069 4063.5 603 P22.0 652.5 653.5 603 R161 7019 4063.5						R205			
R150 4787.5 5637.5 603 R208 6020 3720 603 R151 4787.5 5637.5 603 R210 2725 1350 603 R152 4412.5 5637.5 603 R210 2757 1350 603 R153 3875 5637.5 603 R211 5275 5637.5 603 R154 4037.5 5637.5 603 R212 3462.5 5637.5 603 R156 4825 5637.5 603 R214 2987.5 5637.5 603 R156 3387.5 5637.5 603 R216 3300 127.5 603 R167 3265 5637.5 603 R216 2300 300 603 R168 3387.5 5637.5 603 R218 300 105.5 603 R160 7068 4063.5 603 R220 830 360.0 603 R161 7019 4063.5 603 R221 276.5 253.7 603 R166 64									
R1504787.55637.5603R208492.5475603R15142505637.5603R210277.51350603R153387.55637.5603R211527.52150603R1544037.55637.5603R2123462.55637.5603R155482.5350603R2143087.55637.5603R1563307.55637.5603R2143087.55637.5603R157322.55637.5603R216300127.5603R1583337.55637.5603R2171100472.5603R1583337.55637.5603R2182760300603R16070694063.5603R221275.572.5603R16170194063.5603R221275.572.5603R16270694401603R222292.55637.5603R1646770457.5603R221275.572.5603R165645.4451.5603R223292.5150603R16666454600603R2242355663.5603R16666454600603R2242355603603R16666454660603R226501.5603R16766954525603R223340.0615603 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
R151 4250 5637.5 603 R210 2755 1350 603 R152 4412.5 5637.5 603 R210 2575 1350 603 R154 4037.5 5637.5 603 R212 3462.5 5637.5 603 R156 4825 350 603 R214 3087.5 5637.5 603 R156 3305 135 603 R214 3087.5 5637.5 603 R157 3225 5637.5 603 R216 3300 1275 603 R158 3387.5 5637.5 603 R218 2760 300 603 R160 7069 4063.5 603 R220 830 3600 603 R161 7019 4063.5 603 R221 2752 72.5 603 R162 7069 4401 603 R221 2752 72.5 603 R162 6420 4555 603 R224 2355 255 603 R164 6420 4									
R152 4412.5 5637.5 603 R210 2575 1350 603 R154 4037.5 5637.5 603 R212 3462.5 5637.5 603 R156 4425 350 603 R213 2925 5637.5 603 R166 3605 135 603 R214 3087.5 5637.5 603 R157 3225 5637.5 603 R216 3300 1275 603 R158 3387.5 5637.5 603 R217 1100 4725 603 R160 7069 4063.5 603 R218 2760 300 603 R161 7019 4063.5 603 R222 830 360.0 603 R163 7019 4401 603 R221 275.5 72.5 603 R164 6770 4575 603 R222 292.5 503 503 R164 6770 4575 603 R223 292.5 150 603 R165 6450 45									
R153 3875 5637.5 603 R211 5275 2150 603 R155 4037.5 5637.5 603 R212 3462.5 5637.5 603 R156 3805 135 603 R214 3087.5 5637.5 603 R157 3225 5637.5 603 R216 3300 1275 603 R158 3387.5 5637.5 603 R217 1100 4725 603 R160 7069 4063.5 603 R212 2452.5 5637.5 603 R161 7019 4063.5 603 R220 630 3000 603 R162 7069 4401 603 R221 2752.5 72.5 603 R164 6770 4575 603 R222 2925 225 603 R166 6845 4515 603 R222 2925 225 603 R166 6840 4516 603 R226 320 603 633 R166 6405 4660									
R154 4037.5 6637.5 603 R213 2425 6637.5 603 R156 3605 135 603 R213 2925 6637.5 603 R157 3225 5637.5 603 R214 3087.5 5637.5 603 R157 3225 5637.5 603 R217 100 4725 603 R159 2850 5637.5 603 R217 1100 4725 603 R160 7069 4063.5 603 R219 745 1105 603 R161 7019 4063.5 603 R220 830 3600 603 R163 7019 4401 603 R221 275.5 72.5 603 R164 6770 4575 603 R222 2925 150 603 R165 6845 4515 603 R224 2355 255 603 R165 6845 4515 603 R224 2355 255 603 R166 6620 4525									
R156 4825 350 603 R214 2925 6637.5 603 R156 3605 135 603 R214 3087.5 6637.5 603 R157 3225 5637.5 603 R216 3000 1275 603 R158 3387.5 5637.5 603 R217 1100 4725 603 R160 7069 4063.5 603 R218 2760 300 603 R161 7019 4063.5 603 R220 830 3600 603 R162 7070 4401 603 R221 275.5 72.5 603 R164 6770 4575 603 R222 2925 150 603 R166 6640 4590 603 R224 2355 2555 603 R166 6645 4660 603 R226 3215 405 603 R166 6450 4555 603									
R1563605135603R2143087.55637.5603R15732255637.5603R21633001275603R15928505637.5603R21711004725603R1670503675603R2182760300603R16170194063.5603R2217451105603R16170194063.5603R22165255637.5603R16270694401603R2212752.572.5603R16370194401603R2212925225603R16467704575603R2222925150603R16666204590603R2232925150603R16666204590603R22423552526603R166664054520603R2242355603603R1761954565603R2283215405603R17061954565603R231750603603R17161954495603R231750603R17260454555603R231750603R17360454495603R234750603R17458954555603R234750603R17558954555603R2344500603 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
R15732255637.5603R216206835SMDRES805R1583387.55637.5603R21711004725603R16070603675603R2182760300603R16170194063.5603R2197451105603R16270694401603R2208503600603R16370194401603R221275.57.5603R16467704575603R2222955255603R16568454515603R2222955255603R16666204590603R2222955250603R16666204590603R2242355250603R16864054660603R22747103750603R17-612.51050603R2285875260603R17-619.54555603R23147403660603R17161954495603R231750603603R17360454495603R2323940615603R17458954555603R2317505625603R17558954495603R23452004265SMDRES805R17470194138.5603R2345200603R17570694138.5 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
R1583387.55637.5603R21633001275603R1670503675603R21711004725603R16070694063.5603R2182760300603R16170194063.5603R22965255637.5603R16270694401603R2208303600603R16370194401603R2212752.572.5603R16467704575603R2222925225603R16568454515603R2222925256603R16666204590603R22423555255603R16766954520603R2263215405603R17612.51050603R228375.2603603R17061954565603R228375.2603603R17161954495603R23347403660603R17161954495603R2345760603R17360454495603R2345760603R17558954495603R2345760603R17558954495603R2345760603R17558954495603R2345760603R17670694138.5603R2345260603 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
R16928505637.5603R21711004725603R16070694063.5603R2182760300603R16170194063.5603R2265255637.5603R16270694401603R2208303600603R16370194401603R2212752.572.5603R16467704575603R2222925150603R16568454515603R2232925150603R16666204590603R22423552525603R16766954520603R22423552525603R16864054660603R22747103750603R170612.51050603R2285875260603R177-612.51050603R2293254675603R17161954495603R23151804675603R17161954495603R2315180603615603R17360454555603R23151804515603R231R17458954555603R23452004265SMDRES805R17770194138.5603R23452004265SMDRES805R17670694138.5603R2344500603603									
R16 7050 3675 603 R218 2760 300 603 R160 7069 4063.5 603 R219 745 1105 603 R161 7019 4063.5 603 R22 6525 5637.5 603 R162 7069 4401 603 R220 830 3600 603 R164 6770 4575 603 R222 2925 225 603 R166 6620 4590 603 R224 2355 2525 603 R167 6695 4520 603 R224 2355 260 603 R168 6405 4525 603 R227 4710 3750 603 R17 6195 4565 603 R229 325 4675 603 R17 6195 4565 603 R231 5180 4510 603 R171 6195 4555 603 R234									
R160 7069 4063.5 603 R219 745 1105 603 R161 7019 4063.5 603 R22 6525 5637.5 603 R162 7019 4401 603 R221 2352.5 225 603 R164 6770 4575 603 R222 2925 255 603 R165 6845 4515 603 R224 2355 2556 603 R166 6620 4590 603 R224 2355 260 603 R168 6405 4660 603 R228 5875 260 603 R17 -612.5 1050 603 R23 4740 3660 603 R171 6195 4565 603 R23 1740 360 603 R172 60445 4555 603 R23 3740 360 603 R172 6045 4555 603 R23 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
R16170194063.5603R2265255637.5603R16270694401603R2208303600603R16467704575603R2212752.57.2.5603R16466204590603R2222925255603R16568454515603R2222925252.5603R16666204590603R2242355252.5603R16766954520603R2263215405603R16864054525603R22747103750603R17-612.51050603R2285875260603R17-61954565603R23017754675603R17161954495603R23151804510603R17360454495603R2323940615603R17458954555603R233-7505625603R17558954495603R23452004265SMDRES805R17670694138.5603R2374650603603R17870194476603R23647954650603R17870694138.5603R2374560603R17770194476603R2364580603R17866854590603 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
R162 7069 4401 603 R220 830 3600 603 R163 7019 4401 603 R221 275.5 72.5 603 R164 6770 4575 603 R222 2925 255 603 R165 6845 4515 603 R224 2355 255 603 R166 6620 4590 603 R224 2355 255 603 R168 6405 4660 603 R227 4710 3750 603 R170 6125 1050 603 R228 5875 260 603 R171 6195 4495 603 R231 4740 3660 603 R172 6045 4555 603 R231 5180 4510 603 R173 6045 4495 603 R231 5180 4510 603 R174 5895 4555 603 R233 -750 5625 603 R175 5895 4955 603									
R163 7019 4401 603 R221 2752.5 72.5 603 R164 6770 4575 603 R222 2925 150 603 R166 6620 4590 603 R223 2925 150 603 R167 6695 4520 603 R224 2355 2525 603 R168 6405 4660 603 R226 3215 405 603 R169 6450 4525 603 R228 5875 260 603 R177 -6125 1050 603 R230 1075 4675 603 R170 6195 4565 603 R230 1075 4675 603 R171 6195 4495 603 R231 -750 5625 603 R172 6045 4495 603 R233 -750 5625 603 R174 5895 4555 603 R234 -795 4650 603 R175 5895 4495 603									
R164 670 4575 603 R222 2925 225 603 R165 6845 4515 603 R224 2355 5265 603 R166 6695 4520 603 R224 2355 5265 603 R168 6405 4660 603 R226 3215 405 603 R169 6450 4525 603 R227 4710 3750 603 R17 -612.5 1050 603 R228 5875 260 603 R170 6195 4565 603 R23 4740 3660 603 R172 6045 4555 603 R231 5180 4510 603 R173 6045 4955 603 R234 5200 4265 603 R174 5895 4495 603 R234 5200 4265 SMDRES805 R175 5895 4495 603 R237 4656.5 603 R37 R176 7069 4138.5 603									
R165 6645 4515 603 R223 2925 150 603 R166 6620 4590 603 R224 2355 2525 603 R167 6695 4520 603 R225 500 3550 603 R168 6405 4660 603 R226 3215 405 603 R17 -612.5 1050 603 R228 5875 260 603 R170 6195 4565 603 R23 4740 3660 603 R171 6045 4555 603 R231 5180 4510 603 R173 6045 4495 603 R232 3940 615 603 R175 5895 4495 603 R235 4795 4650 603 R176 7069 4138.5 603 R236 4795 4650 603 R177 7019 4476 603 R236									
R16666204590603R22423552525603R16766954520603R2255003550603R16864054660603R2263215405603R17-612.51050603R2285875260603R17-612.51050603R2293254675603R17161954565603R2293254675603R17260454495603R23151804510603R17360454495603R23151804510603R17458954555603R233-7505625603R17558954495603R23452004265SMDRES805R17670694138.5603R23647954650603R17770194138.5603R2374665.5603R17870694138.5603R2374665.0603R17870694138.5603R2374650603R17870694138.5603R2374655603R18068454575603R2394581.54650603R181-925900603R244915410603R18266954590603R24149102635603R1816204525603R2414910<									
R167 6695 4520 603 R225 500 3550 603 R168 6405 4660 603 R226 3215 405 603 R169 6450 4525 603 R227 4710 3750 603 R17 -612.5 1050 603 R228 5875 260 603 R170 6195 4565 603 R223 4740 3660 603 R171 6195 4495 603 R23 4740 3660 603 R172 6045 4555 603 R230 1075 4675 603 R173 6045 4495 603 R233 -750 5625 603 R174 5895 4495 603 R233 -750 5625 603 R175 5895 4495 603 R234 5200 4265 SMDRES805 R177 7019 4138.5 603 R234 5200 4650 603 R178 7069 4476 603									
R16864054660603R2263215405603R16964504525603R22747103750603R17-612.51050603R2285875260603R17061954565603R2293254675603R17161954495603R23010754675603R17260454555603R23010754675603R17360454495603R23151804510603R17458954495603R2323940615603R17558954495603R233-7505625603R17670694138.5603R23452004265SMDRES805R17770194138.5603R23648604650603R17870694476603R2374656.54650603R17970194476603R23848604650603R18068454575603R24915410603R18167704515603R24915410603R18266954590603R24915410603R18266954555603R2451804380603R18464504555603R2451805625603R18464504555 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
R16964504525603R22747103750603R17-612.51050603R2285875260603R17061954565603R2293254675603R17161954495603R23010754675603R17260454555603R23010754675603R17360454495603R23151804510603R17458954495603R2323940615603R17558954495603R233-7505625603R17670694138.5603R23547954650603R17770194138.5603R23648604650603R17870694476603R2374656.54650603R17870694476603R23848604650603R17970194138.5603R2394581.54650603R18068454575603R24047954650603R18167704515603R24047954650603R18266954590603R24149102635603R18464504585603R24451804380603R18464504585603R24451804380603R1846970 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
R17-612.51050603R2285875260603R17061954565603R2293254675603R17161954495603R2347403660603R17260454555603R23010754675603R17360454495603R23151804510603R17458954495603R2323940615603R17558954495603R233-7505625603R17670694138.5603R23347954650603R17770194176603R23648604650603R17870694476603R2374866.54650603R17870694476603R2374866.54650603R18068454575603R23848604650603R18169704515603R24047954650603R18266954590603R24149102635603R18366204525603R24149102635603R18464504585603R24149102635603R18661154565603R24451804380603R18661154565603R24451804380603R1885970455									
R17061954565603R2293254675603R17161954495603R2347403660603R17260454555603R23151804510603R17360454495603R23151804510603R17458954555603R2323940615603R17558954495603R233-7505625603R17670694138.5603R23452004265SMDRES805R17770194138.5603R2374656.54650603R17870694476603R2374656.54650603R17970194476603R2374656.54650603R18-925900603R23848604650603R18068454575603R2404795410603R18167704515603R24149102635603R18366204520603R24149102635603R18464504585603R24451804380603R18563704525603R24451804380603R18661154565603R24451804380603R18761154495603R2471400925603R1885970<									
R17161954495603R2347403660603R17260454555603R23010754675603R17360454495603R23151804510603R17458954555603R2323940615603R17558954495603R233-7505625603R17670694138.5603R23452004265SMDRES805R17770194138.5603R23648604650603R17870694476603R23648604650603R17970194476603R23848604650603R18-925900603R23848604650603R18169254590603R24915410603R18266954590603R24915410603R18366204520603R24149102635603R18464504585603R243-6505625603R18661154565603R24451804380603R18661154565603R24451804380603R18661154565603R245-5505625603R18661154565603R2471400925603R18859704495 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
R17260454555603R23010754675603R17360454495603R23151804510603R17458954555603R2323940615603R17558954495603R233-7505625603R17670694138.5603R23452004265SMDRES805R17770194138.5603R23648604650603R17870694476603R2374656.54650603R17970194476603R23848604650603R18-925900603R23848604650603R18068454575603R24047954650603R18167704515603R24149102635603R18266954590603R24149102635603R18464504585603R24149106033R18661154565603R24451804380603R18859704555603R245-5505625603R18859704495603R2471400925603R18959704495603R2471400925603R18959704495603R2491525925603R1905820449									
R17360454495603R23151804510603R17458954555603R2323940615603R17558954495603R233-7505625603R17670694138.5603R23452004265SMDRES805R17770194138.5603R23547954650603R17870694476603R2374656.54650603R17970194476603R23848604650603R18-925900603R2394581.54650603R184-925900603R244915410603R18167704515603R24149102635603R18266954590603R24243404010603R18366204525603R243-6505625603R18464504585603R243-6505625603R18563704525603R24451804380603R18661154565603R24677505750603R18859704555603R2471400925603R18959704495603R2471400925603R18959704495603R2471400925603R18959704									
R17458954555603R2323940615603R17558954495603R233-7505625603R17670694138.5603R23452004265SMDRES805R17770194138.5603R23547954650603R17870694476603R23648604650603R17970194476603R2374656.54650603R18-925900603R2394581.54650603R18068454575603R24915410603R18266954590603R24047954650603R18366204520603R24149102635603R18464504585603R24149102635603R18563704525603R24451804380603R18661154565603R24451804380603R18661154565603R245-5505625603R18859704495603R2471400925603R18959704495603R2481462.5925603R18959704555603R2471400925603R18959704495603R2491525925603R1905820									
R17558954495603R233-7505625603R17670694138.5603R23452004265SMDRES805R17770194138.5603R23547954650603R17870694476603R23648604650603R17970194476603R2374656.54650603R18-925900603R23848604650603R18068454575603R2494581.54650603R18167704515603R24047954650603R18366204520603R24149102635603R18464504585603R243-6505625603R18563704525603R24451804380603R18661154565603R24677505750603R18859704495603R2471400925603R18959704495603R2471400925603R18959704495603R2481462.5925603R191100250603R2481462.5925603R19158204555603R2491525925603R19219252875603R2491525925603									
R17670694138.5603R23452004265SMDRES805R17770194138.5603R23547954650603R17870694476603R23648604650603R17970194476603R2374656.54650603R18-925900603R23848604650603R18068454575603R2394581.54650603R18167704515603R24915410603R18266954590603R24149102635603R18366204520603R243-6505625603R18464504585603R24451804380603R18563704525603R24451804380603R18661154566603R24451804380603R18859704555603R245-5505625603R18859704495603R24677505750603R18959704495603R2471400925603R191100250603R2481462.5925603R19058204555603R2451587.5925603R19158204495603R2501587.5925603									
R17770194138.5603R23547954650603R17870694476603R23648604650603R17970194476603R2374656.54650603R18-925900603R23848604650603R18068454575603R2394581.54650603R18167704515603R24915410603R18266954590603R24047954650603R18366204520603R24149102635603R18464504585603R24243404010603R18563704525603R24451804380603R18661154565603R24451804380603R18761154495603R245-5505625603R18859704555603R2471400925603R18959704495603R2481462.5925603R19058204555603R2491525925603R19158204495603R2491525925603R19158204495603R2491525925603R19158204495603R2491525925603R19219252875									
R17870694476603R23648604650603R17970194476603R2374656.54650603R18-925900603R23848604650603R18068454575603R2394581.54650603R18167704515603R24915410603R18266954590603R24047954650603R18366204520603R24149102635603R18464504585603R24243404010603R18563704525603R24451804380603R18661154565603R24451804380603R18761154495603R2471400925603R18859704555603R2471400925603R18959704495603R2471400925603R191100250603R2481462.5925603R19058204555603R2491525925603R19158204495603R250765410603R19219252875603R2501587.5925603									
R17970194476603R2374656.54650603R18-925900603R23848604650603R18068454575603R2394581.54650603R18167704515603R24915410603R18266954590603R24047954650603R18366204520603R24149102635603R18464504585603R24243404010603R18563704525603R243-6505625603R18661154565603R24451804380603R18761154495603R245-5505625603R18859704555603R24677505750603R18959704495603R2471400925603R191100250603R2481462.5925603R19058204555603R2491525925603R19158204495603R2491525925603R19158204495603R2501587.5925603R19219252875603R2501587.5925603									
R18-925900603R23848604650603R18068454575603R2394581.54650603R18167704515603R24915410603R18266954590603R24047954650603R18366204520603R24149102635603R18464504585603R24243404010603R18563704525603R243-6505625603R18661154565603R24451804380603R18761154495603R24677505750603R18859704555603R2471400925603R18959704495603R2481462.5925603R191100250603R2491525925603R19058204555603R2491525925603R19158204495603R2491525925603R19219252875603R2501587.5925603									
R18068454575603R2394581.54650603R18167704515603R24915410603R18266954590603R24047954650603R18366204520603R24149102635603R18464504585603R24243404010603R18563704525603R243-6505625603R18661154565603R24451804380603R18761154495603R245-5505625603R18859704555603R24677505750603R18959704495603R2471400925603R191100250603R2491525925603R19058204555603R2491525925603R19158204495603R25765410603R19219252875603R2501587.5925603									
R18167704515603R24915410603R18266954590603R24047954650603R18366204520603R24149102635603R18464504585603R24243404010603R18563704525603R243-6505625603R18661154565603R24451804380603R18761154495603R24675505625603R18859704555603R24677505750603R18959704495603R2471400925603R191100250603R2491525925603R19058204555603R2491525925603R19158204495603R25765410603R19219252875603R2501587.5925603									
R18266954590603R24047954650603R18366204520603R24149102635603R18464504585603R24243404010603R18563704525603R243-6505625603R18661154565603R24451804380603R18761154495603R24677505750603R18859704555603R2471400925603R18959704495603R2471400925603R191100250603R2491525925603R19058204555603R2491525925603R19158204495603R25765410603R19219252875603R2501587.5925603									
R18366204520603R24149102635603R18464504585603R24243404010603R18563704525603R243-6505625603R18661154565603R24451804380603R18761154495603R245-5505625603R18859704555603R24677505750603R18959704495603R2471400925603R1991100250603R2491525925603R19158204495603R2491525925603R19158204495603R25765410603R19219252875603R2501587.5925603									
R18464504585603R24243404010603R18563704525603R243-6505625603R18661154565603R24451804380603R18761154495603R245-5505625603R18859704555603R24677505750603R18959704495603R2471400925603R191100250603R2481462.5925603R19058204555603R2491525925603R19158204495603R25765410603R19219252875603R2501587.5925603									
R18661154565603R24451804380603R18761154495603R245-5505625603R18859704555603R24677505750603R18959704495603R2471400925603R191100250603R2481462.5925603R19058204555603R2491525925603R19158204495603R25765410603R19219252875603R2501587.5925603	R184								603
R18661154565603R24451804380603R18761154495603R245-5505625603R18859704555603R24677505750603R18959704495603R2471400925603R191100250603R2481462.5925603R19058204555603R2491525925603R19158204495603R25765410603R19219252875603R2501587.5925603	R185	6370	4525	603		R243	-650	5625	603
R18761154495603R245-5505625603R18859704555603R24677505750603R18959704495603R2471400925603R191100250603R2481462.5925603R19058204555603R2491525925603R19158204495603R25765410603R19219252875603R2501587.5925603	R186	6115	4565	603			5180	4380	603
R18859704555603R24677505750603R18959704495603R2471400925603R191100250603R2481462.5925603R19058204555603R2491525925603R19158204495603R25765410603R19219252875603R2501587.5925603									
R18959704495603R2471400925603R191100250603R2481462.5925603R19058204555603R2491525925603R19158204495603R25765410603R19219252875603R2501587.5925603									
R191100250603R2481462.5925603R19058204555603R2491525925603R19158204495603R25765410603R19219252875603R2501587.5925603									
R19158204495603R25765410603R19219252875603R2501587.5925603									
R19158204495603R25765410603R19219252875603R2501587.5925603									
R192 1925 2875 603 R250 1587.5 925 603									
	R192	1925		603		R250		925	
	R193	3012.5	5637.5	603		R251	1650	925	603

REFERENCE DESIGN

VORTEX CHIPSET

PMC-1990815			ISSUE 4 DS			OSLAM REFERENCE DESIGN: CORE CARD		
R252	3780	255	603	R310	5000	1275	603	
R253	3340	495	603	R311	4850	1275	603	
R254	4855	2635	603	R312	6085	2225	603	
R255	1225	4675	603	R313	1965	2185	603	
R256	2925	-50	603	R314	1835	2185	603	
R257	3100	25	603	R315	725	3600	603	
R258	2925	365	603	R316	5600	2825	603	
R259	500	3500	603	R317	4725	475	603	
R26	4175	2100	603	R318	2410	3740	603	
R260	1375	4675	603	R319	-925	2300	SMDRES1206	
R261	2925	75	603	R32	1925	2675	603	
R262	1925	2800	603	R320	-900	5125	SMDRES1206	
R263	1712.5	925	603	R321	-800	5125	SMDRES1206	
R264	1900	925	603	R322	180	5095	603	
R265	1837.5	925	603	R323	5225	2600	603	
R266	1300	4675	603	R324	4375	4150	603	
R267	1775	925	603	R325	650	4105	603	
R268	1962.5	925	603	R326	5150	590	603	
R269	2025	925	603	R327	1110	4325	603	
R27	4150	4150	603	R328	5250	590	603	
R270	1150	4675	603	R329	5390	590	603	
R271	2087.5	925	603	R33	2375	2775	603	
R272	2150	925	603	R330	5100	590	603	
R273	2212.5	925	603	R331	5300	590	603	
R274	5180	4140	603	R332	5440	590	603	
R275	5056.5	4650	603	R333	1900	4565	603	
R276	4375	4275	603 603	R334	6085	2290	603	
R277 R278	4375	4212.5 4075	603 603	R335	985 2425	410 4565	603	
R279	4375 4925	3825	603	R336 R337	2425 2625	4565 4070	603 603	
R28	4925 2410	3625 1470	603	R338	1600	4070	603	
R280	4375	4335	603	R339	1840	3250	603	
R281	3605	4335 5	603	R34	2375	2625	603	
R282	275	5 4950	603	R340	1895	3120	603	
R283	275	5100	603	R340	2455	3235	603	
R284	750	5000	603	R342	2625	3900	603	
R285	750	4850	603	R343	755	5065	603	
R286	275	4875	603	R344	1710	4530	603	
R287	275	5025	603	R345	3565	800	603	
R288	4850	1425	603	R346	-105	1145	603	
R289	3735	3675	603	R347	1775	3075	603	
R29	3175	1275	603	R348	2915	1045	603	
R290	4785	4320	603	R349	-295	1190	603	
R291	5000	3825	603	R35	4740	3560	603	
R292	5006.5	4650	603	R350	-230	1190	603	
R293	4875	3825	603	R351	865	1125	603	
R294	4375	4275	603	R352	-45	1145	603	
R295	4375	4400	603	R353	100	1145	603	
R296	912.5	5637.5	603	R354	245	1330	603	
R297	375	5637.5	603	R355	35	1145	603	
R298	3150	3900	603	R356	4895	600	603	
R299	537.5	5637.5	603	R36	6687.5	5637.5	603	
R3	5325	2600	603	R37	6150	5637.5	603	
R30	2175	205	POWERRES_2714	R38	5190	3435	603	
R300	4375	4475	603	R39	4770	3750	603	
R301	2225	2185	603	R390	2575	1200	603	
R302	2095	2185	603	R391	2575	1275	603	
R303	0	5637.5	603	R4	5125	2150	603	
R304	162.5	5637.5	603	R40	5190	3660	603	
R305	-375	5637.5	603	R41	5190	3510	603	
R306	-212.5	5637.5	603	R42	3615	4690	603	
		0450	603	R43	-475	2625	603	
R307	5200	2150	003				005	
R307 R308	550	1025	603	R44	840	410	603	
R307								

122

REFERENCE DESIGN

VORTEX CHIPSET

PMC-1990815		ISSUE 4	DSLAM REFERENCE DESIGN: CORE CARD				
R47	5775	5637.5	603	RN103	-824.527	749.244	RN4
R48	3390	4260	603	RN104	86.744	2024.527	RN4
R49	3737.5	3750	603	RN105	236.744	2024.527	RN4
R5	5250	1275	603	RN106	6774.244	1250.472	RN4
R50	4125	3875	603	RN107	6775.756	1474.527	RN4
R51	2750	4125	603	RN108	2860.756	2954.527	RN4
R52	3100	-50	603	RN109	2560.756	3174.527	RN4
R53	2925	300	603	RN11	5124.244	2824.527	RN4
R54	3202.5	4702.5	SMDRES805	RN110	5475.756	2824.527	RN4
R55	3040	2570	603	RN111	6924.244	1250.472	RN4
R56	3260	2605	603	RN112	6474.244	1250.472	RN4
R57	3260	2545	603	RN112	6925.756	1474.527	RN4
R58	3260	2485	603	RN114	6624.244	1250.472	RN4
R59	3475	2650	603	RN115	6625.756	1474.527	RN4
R6	250	1025	603	RN116	6475.756	2349.527	RN4
R60	3975	2650	603	RN117	6775.756	2349.527	RN4
R61	3475	2275	603	RN118	6925.756	2349.527	RN4
R62	2275	5637.5	603	RN119	6474.244	2125.472	RN4
R63	2437.5	5637.5	603	RN12	-824.527	1199.244	RN4
R64	1900	5637.5	603	RN120	6624.244	2125.472	RN4
R65	2062.5	5637.5	603	RN120	6924.244	2125.472	RN4
R66	3450	1100	603	RN122	6774.244	2125.472	RN4
R67	1525	5637.5	603	RN122	6625.756	2349.527	RN4
R68	1687.5	5637.5	603	RN123	6084.527	939.244	RN4
R69	1150	5637.5	603	RN125	6084.527	1124.244	RN4
R7	4775	2150	603	RN125	3850.756	1599.527	RN4
R70	1312.5	5637.5	603	RN120	3700.756	1599.527	RN4
R71	675	5637.5	603	RN127	3550.756	1599.527	RN4
R72	837.5	5637.5	603	RN120	3400.756	1599.527	RN4
R73	300	5637.5	603	RN125	-824.527	1799.244	RN4
R74	462.5	5637.5	603	RN130	3849.244	1825.472	RN4
R75	-75	5637.5	603	RN131	3699.244	1825.472	RN4
R76	87.5	5637.5	603	RN132	3549.244	1825.472	RN4
R77	-450	5637.5	603	RN133	3399.244	1825.472	RN4
R78	-287.5	5637.5	603	RN134	4069.527	1964.244	RN4
R79	2350	5637.5	603	RN135	499.527	4079.244	RN4
R8	4775	2595	603	RN136	1425.472	2425.756	RN4
R80	2512.5	5637.5	603	RN137	1425.472	2275.756	RN4
R81	1975	5637.5	603	RN138	1650.472	2275.756	RN4
R82	2137.5	5637.5	603	RN139	1650.472	2425.756	RN4
R83	1600	5637.5	603	RN14	1524.527	1724.244	RN4
R84	1762.5	5637.5	603	RN15	-824.527	1649.244	RN4
R85	4581.5	4650	603	RN16	-824.527	1499.244	RN4
R86	4656.5	4650	603	RN17	2024.244	1300.472	RN4
R87	1225	5637.5	603	RN18	3475.472	2374.244	RN4
R88	1387.5	5637.5	603	RN19	3974.527	2350.756	RN4
R89	750	5637.5	603	RN2	6084.527	1669.244	RN4
R9	2800	3675	603	RN20	6999.244	424.527	RN4
R90	4015	4690	603	RN21	5749.244	2575.472	RN4
R91	4090	4690	603	RN22	5599.244	2575.472	RN4
R92	3940	4690	603	RN23	5449.244	2575.472	RN4
R93	3940	4690	603	RN24	5299.244	2575.472	RN4
R94	3790	4690	603	RN25	6084.527	1819.244	RN4
R95	3790	4690	603	RN26	5149.244	2575.472	RN4
R96	3465	4690	603	RN27	-513.256	2024.527	RN4
R97	3540	4690	603	RN28	-363.256	2024.527	RN4
R98	3390	4690	603	RN29	-363.256	1625.472	RN4
R99	3390	4690	603	RN3	6084.527	1969.244	RN4
RADDR0	7125		PT_PAD50CIR32D	RN30	-213.256	1625.472	RN4
RAS	-720	3960 TST	PT_PAD50CIR32D	RN31	4605.472	3280.756	RN4
RN1	699.244	4275.472	RN4	RN32	-825.472	1950.756	RN4
RN10	5294.244	2824.527	RN4	RN33	5475.756	2825.472	RN4
RN100	1599.527	3849.244	RN4	RN34	6084.527	2119.244	RN4
RN101	-824.527	899.244	RN4	RN35	4605.472	3104.244	RN4
RN102	6475.756	1474.527	RN4	RN36	6084.527	1519.244	RN4

PMC-1990815

REFERENCE DESIGN

ISSUE 4

VORTEX CHIPSET

DSLAM REFERENCE DESIGN: CORE CARD

RN37	-825.472	2100.756	RN4	RN96	450.756	490.472 RN4
RN38	2025.472	1475.756	RN4	RN97	574.527	775.756 RN4
RN39	575.472	1474.244	RN4	RN98	574.527	925.756 RN4
RN4	3475.472	2749.244	RN4	RN99	1599.527	3999.244 RN4
RN40	575.472	1624.244	RN4	RRDENB	7125	3450 TST_PT_PAD50CIR32D
RN41	575.472	1774.244	RN4	RW	2280	3920 TST_PT_PAD50CIR32D
RN42	599.244	3075.472	RN4	TDAT0	1405	4850 TST_PT_PAD50CIR32D
RN43	449.244	3075.472	RN4	TP_2.5V	175	2825 TST_PT_PAD50CIR32D
RN44	2560.756	2954.527	RN4	TP_3.3V	5645	300 TST_PT_PAD50CIR32D
RN45	2709.244	2954.527	RN4	TP_RSTB	2425	2525 TST_PT_PAD50CIR32D
RN46	2860.756	3174.527	RN4	TP_VCC	3940	725 TST_PT_PAD50CIR32D
RN47 RN48	2709.244	3174.527	RN4 RN4	TP1 TP10	5200 670	700 TST_PT_PAD50CIR32D 2065 TST_PT_PAD50CIR32D
RN40 RN49	4870.472 299.244	3280.756 3075.472	RN4	TP100	-625	3075 TST_PT_PAD50CIR32D
RN5	3974.527	2750.756	RN4	TP11	670	2165 TST_PT_PAD50CIR32D
RN50	499.527	3649.244	RN4	TP115	-750	5500 TST PT PAD50CIR32D
RN51	499.527	3824.244	RN4	TP117	-630	5500 TST_PT_PAD50CIR32D
RN52	-213.256	2024.527	RN4	TP12	670	2265 TST_PT_PAD50CIR32D
RN53	749.244	3075.472	RN4	TP13	1175	2075 TST_PT_PAD50CIR32D
RN54	19.527	3899.244	RN4	TP14	2880	1705 TST PT PAD50CIR32D
RN55	-405.472	3899.244	RN4	TP15	2880	1805 TST_PT_PAD50CIR32D
RN56	4605.472	3279.244	RN4	TP16	2895	2140 TST_PT_PAD50CIR32D
RN57	4870.472	3104.244	RN4	TP17	2395	2145 TST_PT_PAD50CIR32D
RN58	4870.472	3279.244	RN4	TP18	2500	925 TST_PT_PAD60CIR36D
RN59	4870.472	3105.756	RN4	TP19	2625	4825 TST_PT_PAD60CIR36D
RN6	-824.527	1349.244	RN4	TP2	2065	770 TST_PT_PAD50CIR32D
RN60	-180.472	3899.244	RN4	TP20	4158.5	1119 TST_PT_PAD60CIR36D
RN61	-325.472	4249.244	RN4	TP22	1600	3175 TST_PT_PAD50CIR32D
RN62	-325.472	3574.244	RN4	TP23	5425	4300 TST_PT_PAD50CIR32D
RN63	5199.527	3999.244	RN4	TP24 TP25	5100	700 TST_PT_PAD50CIR32D
RN64 RN65	-63.256 150.756	2024.527 490.472	RN4 RN4	TP25 TP26	1600 2125	3025 TST_PT_PAD50CIR32D 4850 TST_PT_PAD50CIR32D
RN66	-149.244	490.472	RN4 RN4	TP27	2625	725 TST_PT_PAD50CIR32D
RN67	6050.472	-0.756	RN4	TP28	5425	4200 TST_PT_PAD50CIR32D
RN68	1599.527	4149.244	RN4	TP3	1765	770 TST_PT_PAD50CIR32D
RN69	6050.472	149.244	RN4	TP30	5300	700 TST_PT_PAD50CIR32D
RN7	221.744	1625.472	RN4	TP31	1965	770 TST PT PAD50CIR32D
RN70	6050.472	299.244	RN4	TP32	5000	700 TST_PT_PAD50CIR32D
RN71	-824.527	900.756	RN4	TP33	-650	2000 TST_PT_PAD60CIR36D
RN72	-600.756	490.472	RN4	TP38	7125	3775 TST_PT_PAD60CIR36D
RN73	-450.756	490.472	RN4	TP39	7205	2985 TST_PT_PAD60CIR36D
RN74	-300.756	490.472	RN4	TP4	4200	2585 TST_PT_PAD60CIR36D
RN75	299.244	490.472	RN4	TP40	150	4700 TST_PT_PAD60CIR36D
RN76	449.244	490.472	RN4	TP41	4175	5025 TST_PT_PAD60CIR36D
RN77	-150.756	490.472	RN4	TP42	1865	770 TST_PT_PAD50CIR32D
RN78 RN79	574.527	924.244 750.756	RN4	TP43 TP45	1965	4850 TST_PT_PAD50CIR32D 4100 TST_PT_PAD50CIR32D
RN8	-824.527 5295.756	2824.527	RN4 RN4	TP45 TP46	5425 2625	825 TST_PT_PAD50CIR32D
RN80	574.527	774.244	RN4	TP40	2025	4850 TST_PT_PAD50CIR32D
RN81	-0.756	490.472	RN4	TP48	2205	4850 TST_PT_PAD50CIR32D
RN82	149.244	490.472	RN4	TP49	2625	925 TST_PT_PAD50CIR32D
RN83	-824.527	1050.756	RN4	TP5	5115	3850 TST PT PAD60CIR36D
RN84	-825.472	1050.756	RN4	TP50	1275	750 TST_PT_PAD60CIR36D
RN85	1599.527	3699.244	RN4	TP51	2245	-60 TST_PT_PAD60CIR36D
RN86	2300.756	4599.527	RN4	TP52	-425	2275 TST_PT_PAD60CIR36D
RN87	4605.472	3105.756	RN4	TP53	5600	3675 TST_PT_PAD60CIR36D
RN88	-599.244	490.472	RN4	TP54	1275	5175 TST_PT_PAD60CIR36D
RN89	2324.244	3225.472	RN4	TP55	275	2475 TST_PT_PAD60CIR36D
RN9	5125.756	2824.527	RN4	TP56	700	2800 TST_PT_PAD60CIR36D
RN90	-0.756	489.527	RN4	TP57	2725	1250 TST_PT_PAD60CIR36D
RN91	1599.527	4299.244	RN4	TP58	3960	2195 TST_PT_PAD60CIR36D
RN92 RN93	1599.527	3549.244	RN4	TP59 TP6	2980	2850 TST_PT_PAD60CIR36D 1015 TST PT PAD60CIR36D
RN93 RN94	-449.244 -299.244	490.472 490.472	RN4 RN4	TP6 TP60	7195 5625	1015 TST_PT_PAD60CIR36D 4675 TST_PT_PAD60CIR36D
RN95	300.756	490.472	RN4	TP61	2300	1075 TST_PT_PAD60CIR36D
11100	500.750		11147	11 01	2000	

PMC-1990815

PMC-Sierra, Inc.

ISSUE 4

VORTEX CHIPSET

REFERENCE DESIGN

DSLAM REFERENCE D	ESIGN: CORE CARD
DOLAN NEI ENENGE D	

TP62	2050	475 TST P	T PAD60CIR36D	U22	4823.5	475	SSOP5 95
TP63	2050		T PAD60CIR36D	U23	896.5	1235	SSOP5 95
TP64	1385	_	T PAD60CIR36D	U25	525	5000	SO14NB-2
TP65	1285	185 TST_P	T_PAD60CIR36D	U26	2150	2775	SO14NB-2
TP68	2400	1075 TST	PT_PAD50CIR32D	U27	4781.5	4225	PBGA160
TP7	570	2065 TST	PT_PAD50CIR32D	U3	3725	2300	QSOP20
TP70	2300	925 TST_P	T_PAD60CIR36D	U31	1800	1565	TQFP144-2
TP71	2400	925 TST_P	T_PAD60CIR36D	U4	3625	1725	TQFP_100-3
TP72	2400	1375 TST_	PT_PAD50CIR32D	U5	6700	2250	TQFP_100-3
TP74	2400	1225 TST_	PT_PAD50CIR32D	U6	6700	1375	TQFP_100-3
TP75	3075	1650 TST_	PT_PAD50CIR32D	U7	775	3925	SBGA352
TP76	4025	725 TST_P	T_PAD50CIR32D	U8	-480	3510	TSOP54
TP77	3825	900 TST_P	T_PAD60CIR36D	U9	-465	4320	TSOP54
TP78	7025	2700 TST_	PT_PAD50CIR32D	VDD1	2735	4005	JUMPER_3PIN_INLINE
TP79	6200	2600 TST_	PT_PAD50CIR32D	VDD2	2735	3420	JUMPER_3PIN_INLINE
TP8	570		PT_PAD50CIR32D	VX_DX_D0	5425	3575	TST_PT_PAD50CIR32D
TP80	6825	925 TST_P	T_PAD60CIR36D	VX1_CSB	5600	3575	TST_PT_PAD50CIR32D
TP81	3225	3250 TST_	PT_PAD50CIR32D	VX1_TCLK	6300	2950	TST_PT_PAD50CIR32D
TP82	1450	2680 TST_	PT_PAD50CI32D	WE	-640	3960	TST_PT_PAD50CIR32D
TP86	4420	3770 TST_	PT_PAD50CIR32D	WR	1565	4850	TST_PT_PAD50CIR32D
TP88	1265	2075 TST_	PT_PAD50CIR32D	WRDAT0	700	4725	TST_PT_PAD50CIR32D
TP9	570	2265 TST_	PT_PAD50CIR32D	WRPRTY	550	4725	TST_PT_PAD50CIR32D
TP99	-400	3075 TST_	PT_PAD50CIR32D	WTPA	375	2825	TST_PT_PAD50CIR32D
U1	5075	1700	SBGA432	Y1	3665	746	CRYS_MA-505
U10	2150	3525	PBGA119	Y2	3125	2300	OSC-2
U11	3150	550	SO8NB-3	Y3	1700	2775	OSC-2
U12	2150	4300	PBGA119	Y4	0	4975	OSC-2
U13	3250	975	SO20WB	Y5	4515	3585	OSC-2
U14	-625	2600	DIP8_SOCKET	ZQ1	1900	4675	JUMPER_3PIN_INLINE
U15	-112.5	1300	QFP176	ZQ2	1640	3390	JUMPER_3PIN_INLINE
U16	3375	250	SO8NB-3				
U17	4965	3560	SO14NB-2				
U18	3375	12.5	SOIC8				
U19	3450	3925	SBGA_304				
U2	3725	2700	QSOP20				
U20	6320	3745	SBGA_304				
U21	1075	2825	SOT223-3				

REFERENCE DESIGN PMC-1990815

VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

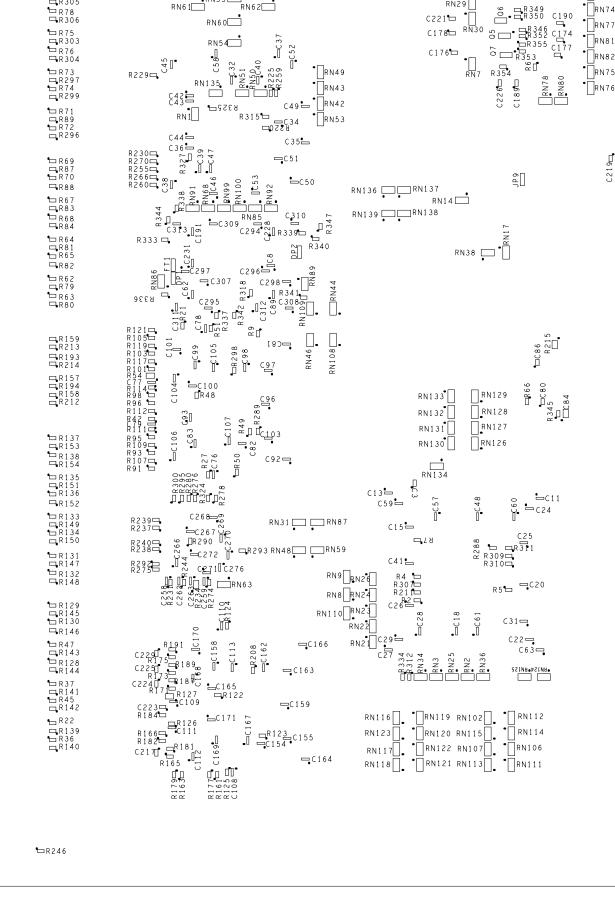
22. APPENDIX I: GLOSSARY

ADSL	Asymmetric Digital Subscriber Line
ATM	Asynchronous Transfer Mode
CPLD	CMOS Programmable Logic Device
DSLAM	Digital Subscriber Line Access Multiplexer
LCD	Loss of Cell Delineation
LED	Light Emitting Diode
LOS	Loss of Signal
LSW	Least Significant Word
LVDS	Low Voltage Differential Signal
Metadriver	= VORTEX Chipset Driver (card level driver)
MSW	Most Significant Word
NBT SSRAM	No-bus-turnaround Synchronous Static RAM
PCB	Printed Circuit Board
POTS	Plain Old Telephony System
SDRAM	Synchronous Dynamic Random Access Memory
SEEP	Serial EEPROM
SONET	Synchronous Optical NETwork
SSRAM	Synchronous Static RAM
S/UNI	SATURN User Network Interface
Telco	Telephone Company
UTOPIA	Universal Test & Operations PHY Interface
VCC	Virtual Channel Connection
VPC	Virtual Path Connection

9 @ @ @ @ @ @ @ • @

3V3_A_PLANE

PMC-SIERRA DSLAM_CORE REV.3.0 2000


• • • 00 ۲ ۲ • . • . • 0 • 9 0 9 0 9 0 • • • • • • • • • • • • • • • ۲ • 0.00000 • • • • • • •

3V3 PLANE

PMC-SIERRA DSLAM CORE REV.3.0 2000

<

2000 0 \sim REV. CORE SLAM \Box SIERRA 1 PMC

 \oplus

RNB3
 RN71
 RN79

R17

C227

RN29

C221 •

R15🖵

R14 -

R 4 3 🗖

C285 📥

•RN55 - • RN61 RN62

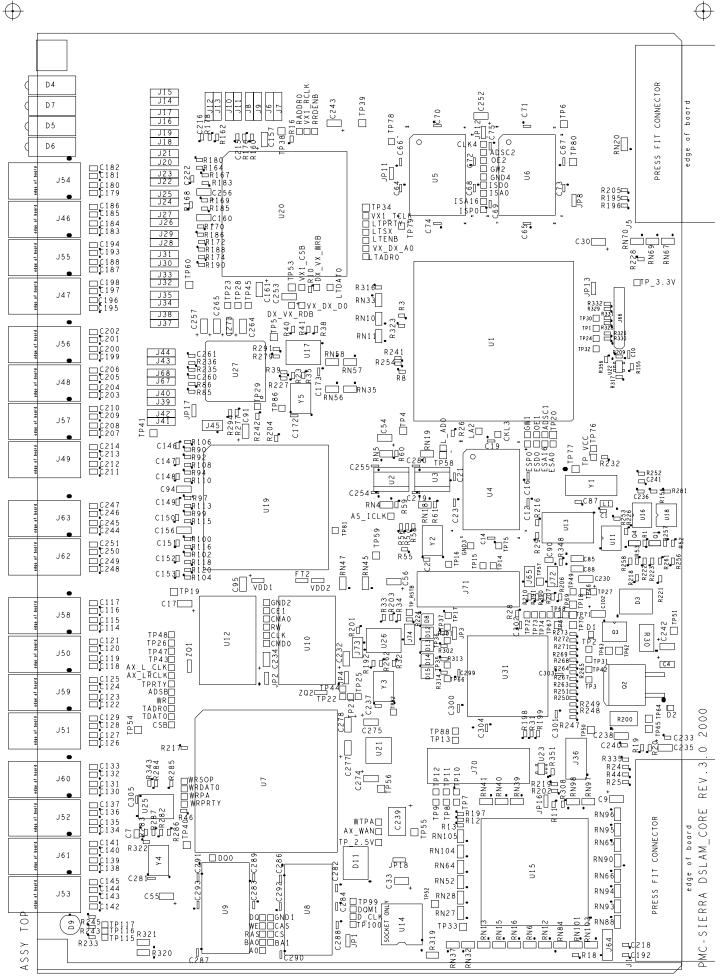
R N 6 0

لر 2

. RN73

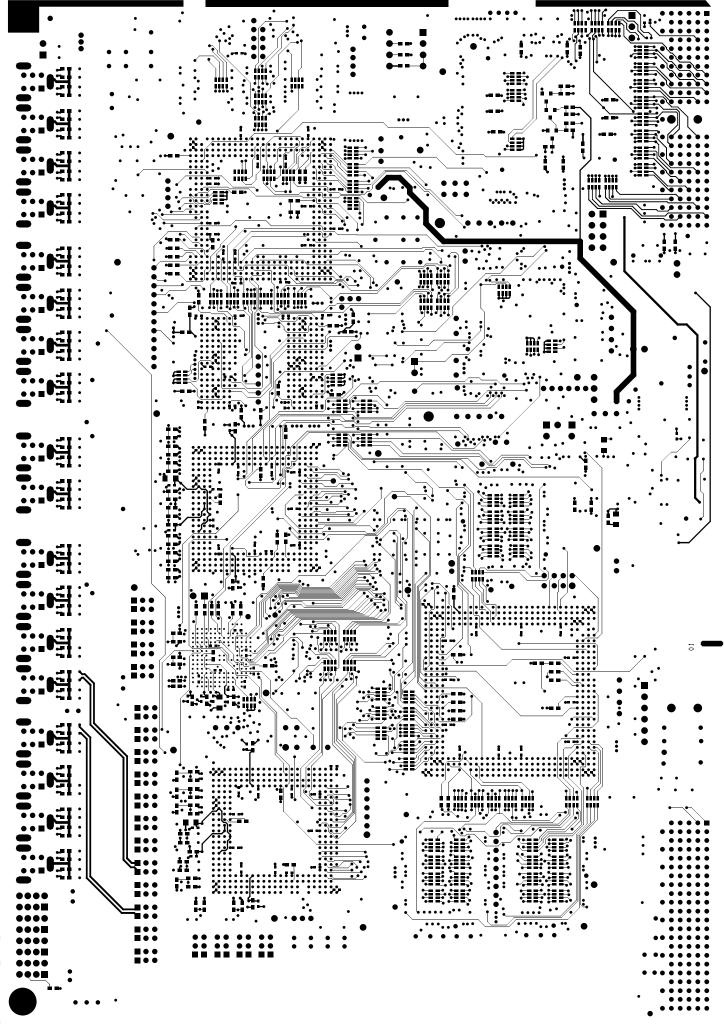
RN74

C219**__** C220**__**


--

 \oplus

• R 7 7 □ R 305


□ R 78 □ R 306

 \oplus

 \oplus

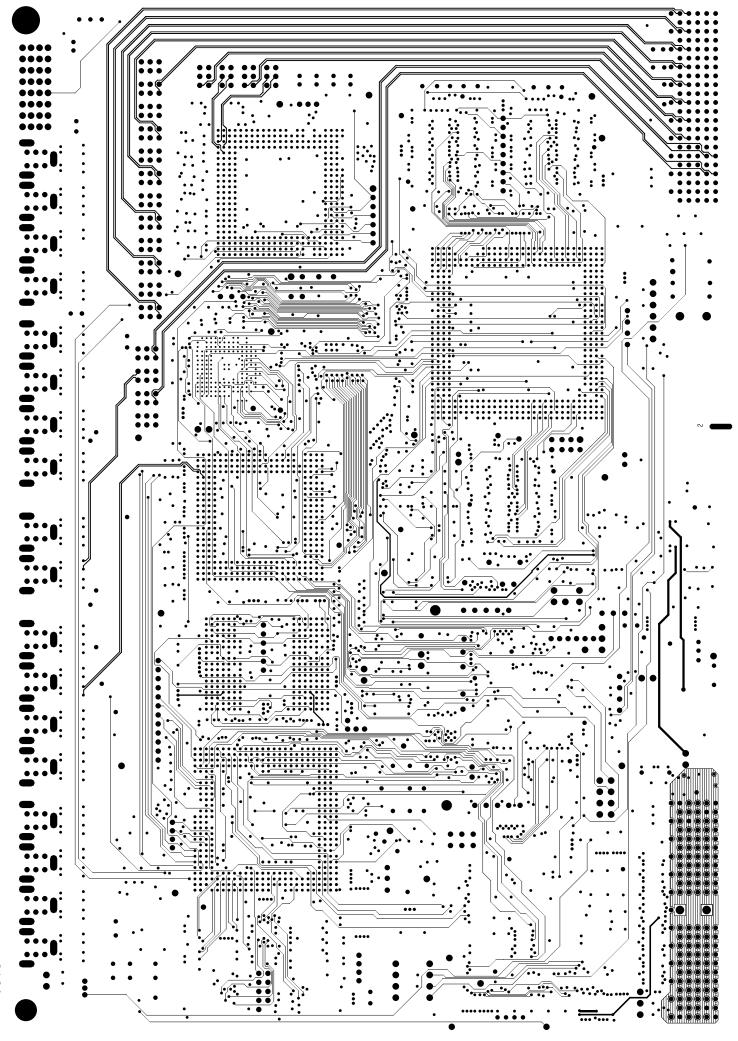
 \oplus

PMC-SIERRA DSLAM_CORE REV.3.0

2000

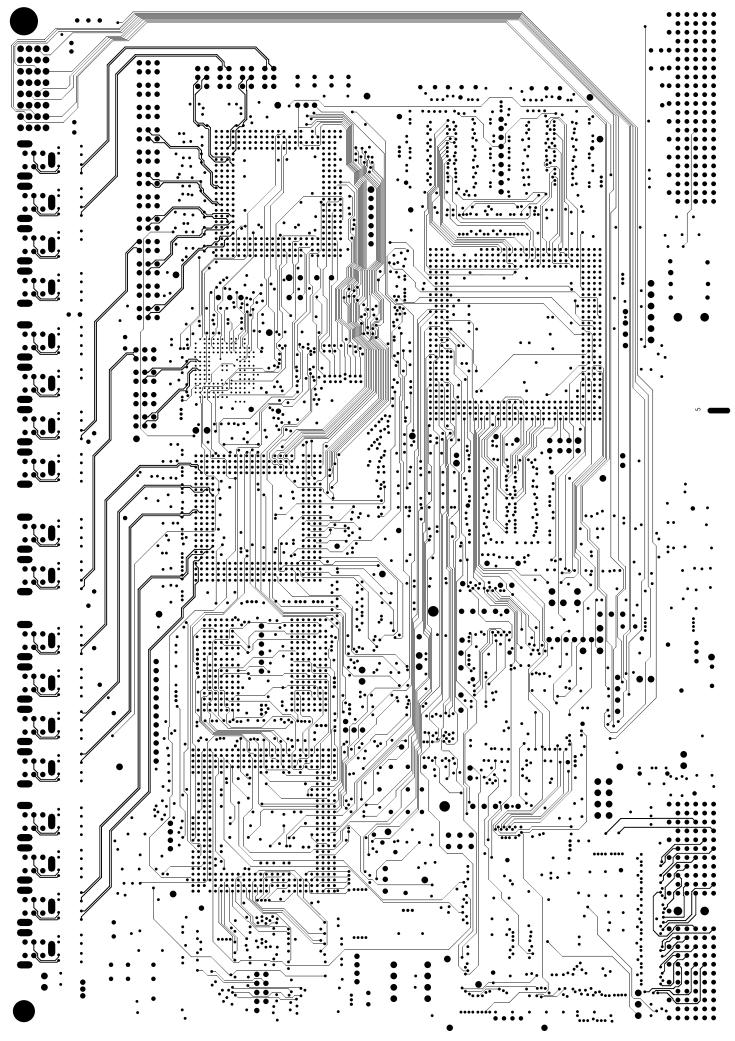
BOTTOM LAYER

ш
Z
\triangleleft
Д_
Z
G

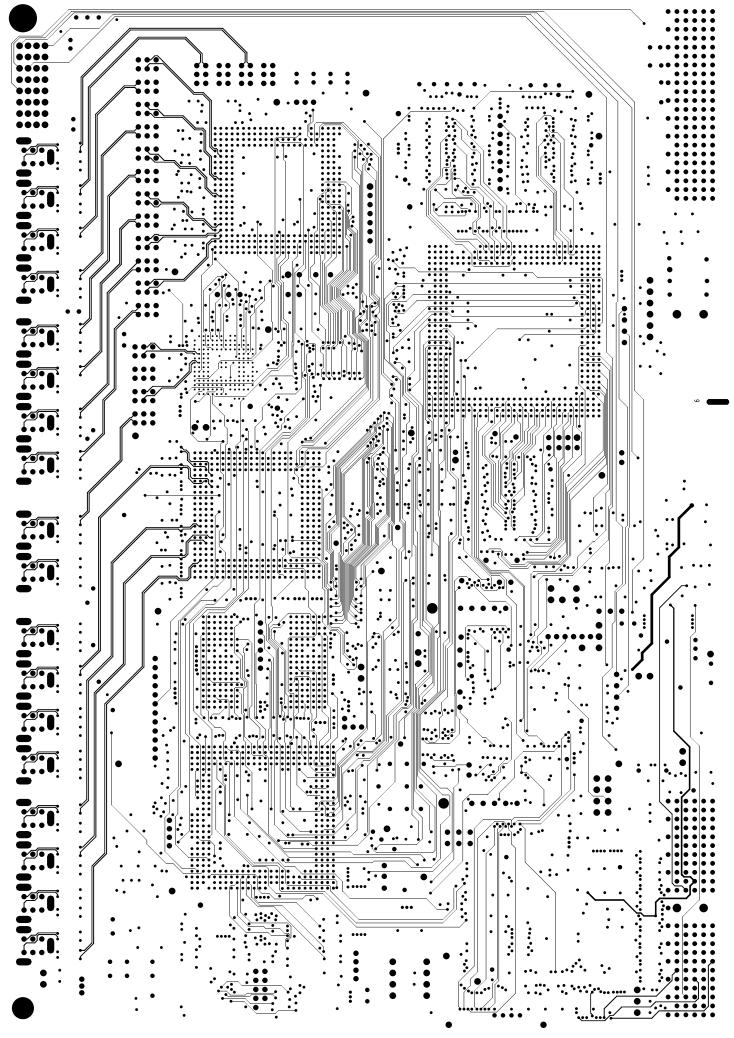

	-

PMC-SIERRA DSLAM_CORE REV. 3.0 2000

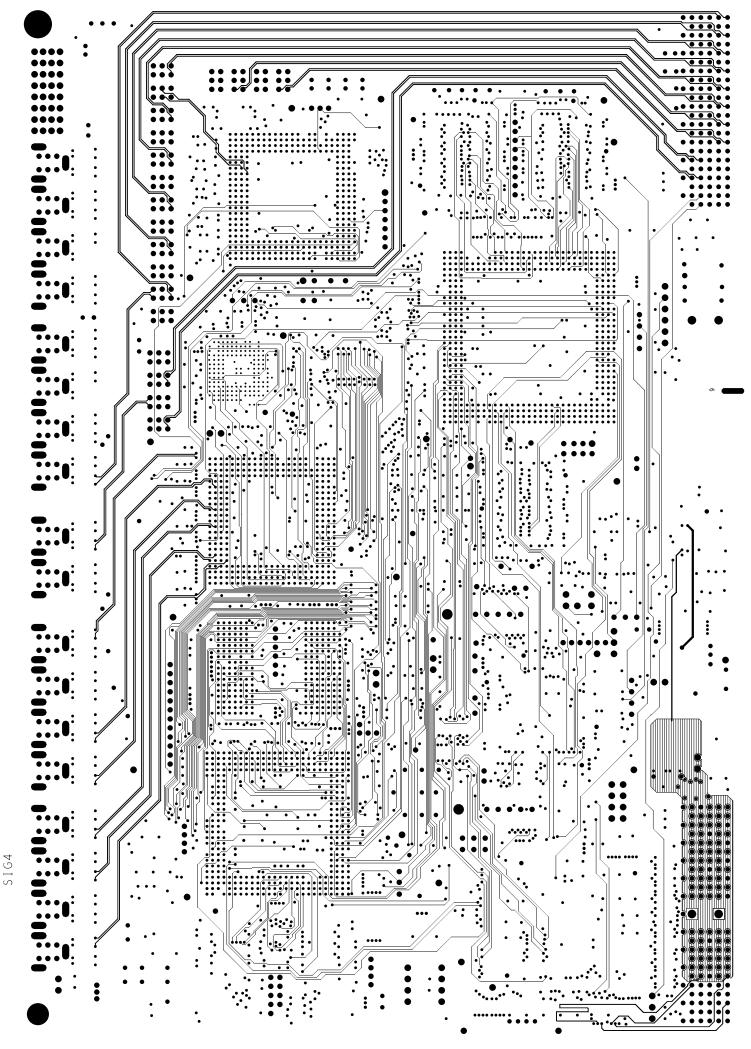
GND PLANE

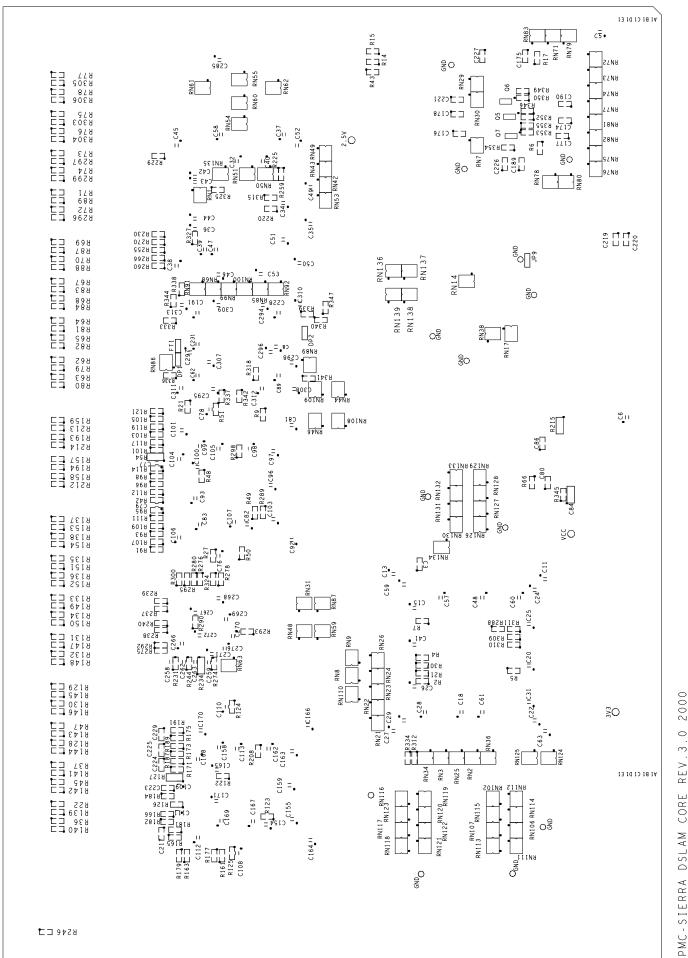

PMC-SIERRA DSLAM_CORE REV.3.0 2000

			U		ш		
REVISIONS DESCRIPTION DESCRIPTION	t leyer f yet f to Name conductora t to DILLETHIC TO CONDUCTOR 100, 14,MC CONDUCTOR	COPPER COMONCION S10.2 S10.2	D HOLES SIZE a dre in mils PLATED PLATED PLATED PLATED	25.0 PLATED 103 Sigle_LAKER 26.0 PLATED 244 393 APLANE 32.0 PLATED 244 393 APLANE 32.0 PLATED 366 5164 LAVER 5164 LAVER 39.0 PLATED 93 BOTTOM LAVER 39.1 PLATED 54 SOLDER MASK BOTTOM 39.3 PLATED 54 SOLDER MASK BOTTOM 39.3 PLATED 2 SOLDER MASK BOTTOM 42.0 PLATED 8 SOLDER MASK BOTTOM 49.606 PLATED 1 SULDER PASTE TOP	PLATED NOT PLATED NOT PLATED	PME DMC Sierra Inc. Indiana Inc. Inc. Indiana Inc. Inc. Indiana Inc. Inc. Indiana V5A 4V7 Inc.	
L L L L L L L L L L L L L L L L L L L	_		AII AII FIGURE		· ₹ • •	⊕ - ⊕ DRAMN CHECKED ENGRG ISSUED	
\sim	• • • • • • • • • • • • • • • • • • •			45°4.079 145°4.279 245°4.27	•		2
	112.065 (54 1 mes)				2.5 	UNLESS OTHERMISE SPECIFIED DIMENSIONS ARE IN INCHES TOLERANCES ONE 2 PL DECIMALS - 3 PL DECIMALS - MGLES - FRACTIONS -	
m					PMC-SIERRA DSLAM_CORE REV. 3.0 2000 8.085 1205.331	er). 0.008° (inner) 1 oz. on internal layers. ing. hickness. biove. khite base ink. exced ed by UL to the ed by UL to the aurlacturing process.	m
	4,585 [116,461] [12,333]				PMC [1:102 [1:02 [1:02]	They are: [or 50 0mm : 0.017] [ip grad bottom] layer], 0.0008" [inner]) [or 50 0mm : 0.005" [ip grad bottom] layer], 0.0008" [inner]) Notes: 1. Copper thickness is 1/2 oz. on outer layers and 1 oz. on internal layers. 2. Total thickness of board shall be 70 mil o/. 7mil. 3. The outline dimension or specified on this drawing. 4. Material: See board material details above. 5. All holes shall have 1 mil minimum copper wall thickness. 5. Sillectric constants See board material details above. 7. Silk screen shall be Screened in manoconductive white base ink. 8. Maximum worp and twist of finished PCB shall not exceed 9. All more profision 300. 9. All more folds morked with SOUARE R - 0.026" - should be within -0/-0.003" tolerance. 11. Add teardrops - if needed - to compensate for manufacturing process.	
4	•		6 299 [1160]	86. 20 20 20 20 20 20 20 20 20 20 20 20 20	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	They are: for 50 bm = 0.005 for 55 0hm = 0.005 Notes: Notes: 1. Copper thickness is 1/2 oz. 2. Total thickness of board sh 3. The outline dimension are s 4. Material see board anderia 5. All holes shall have 1 mil 5. All holes shall have 1 mil 6. Dielectric constant: See bo 7. Silk screen shall be screen 8. Maximum warp and twist of f 8. Maximum warp and twist of f 9. 0.101 ha/in per 15C-19.00 9. 11 10.1 ha/in the screen stall 9. 0.101 ha/in the screen stall be screen 11. Add teardrops - if needed 11. Add teardrops - if needed	4
			U		<u>ح</u> **	A	


PMC-SIERRA DSLAM_CORE REV.3.0 2000

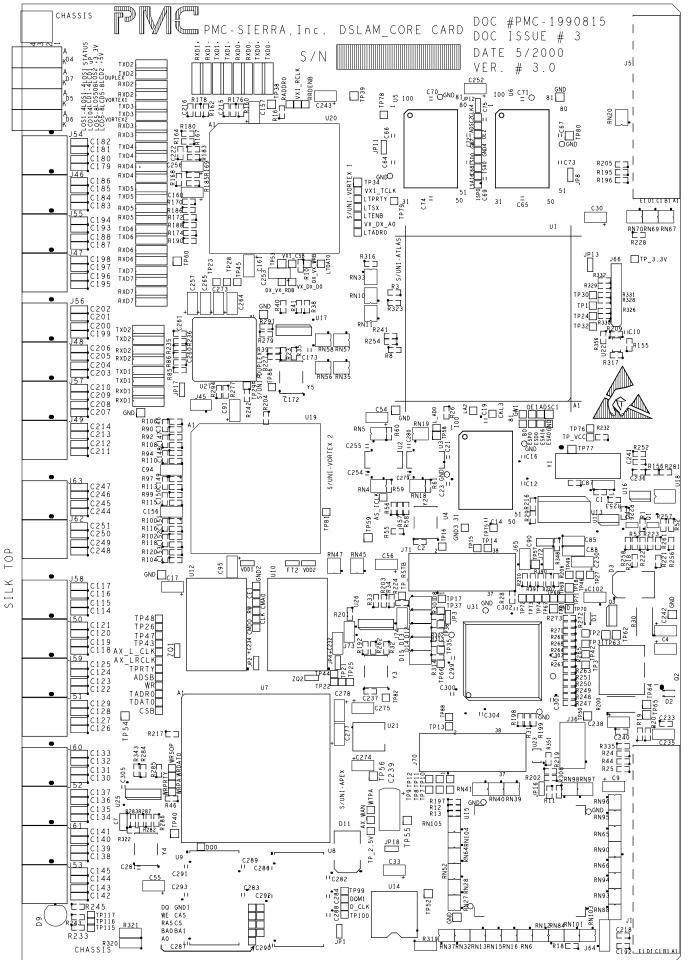
S I G 1




PMC-SIERRA DSLAM_CORE REV.3.0 2000

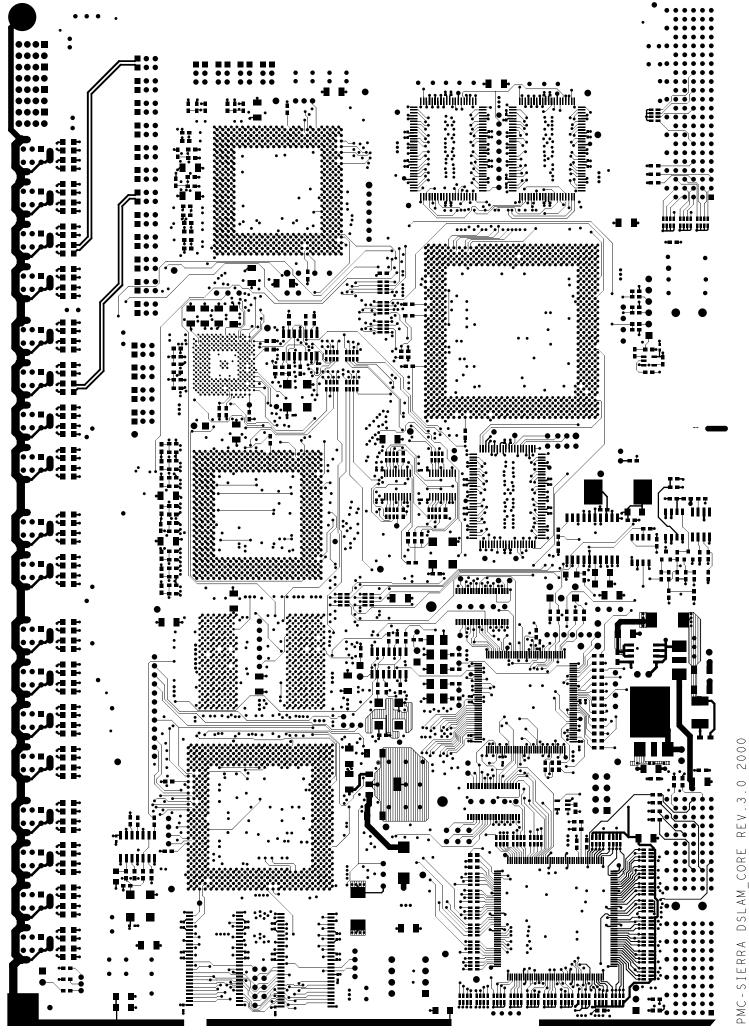
S I G 2

S I G 3



SILK BOTTOM

 \oplus


S

PMC-SIERRA DSLAM_CORE REV.3.0 2000

 \oplus

TOP LAYER

REFERENCE DESIGN PMC-1990815

VORTEX CHIPSET

ISSUE 4

DSLAM REFERENCE DESIGN: CORE CARD

PMC-Sierra, Inc. 105-8555 Baxter Place Burnaby, BC Canada V5A 4V7

Tel: (604) 415-6000 Fax: (604) 415-6200

Document Information: Corporate Information: Applications Information: Web Site: document@pmc-sierra.com info@pmc-sierra.com apps@pmc-sierra.com http://www.pmc-sierra.com

None of the information contained in this document constitutes an express or implied warranty by PMC-Sierra, Inc. as to the sufficiency, fitness or suitability for a particular purpose, merchantability, performance, compatibility with other parts or systems, of any of the products of PMC-Sierra, Inc., or any portion thereof, referred to in this document. PMC-Sierra, Inc. expressly disclaims all representations and warranties of any kind regarding the contents or use of the information, including, but not limited to, express and implied warranties of accuracy, completeness, merchantability, fitness for a particular use, or non-infringement.

In no event will PMC-Sierra, Inc. be liable for any direct, indirect, special, incidental or consequential damages, including, but not limited to, lost profits, lost business or lost data resulting from any use of or reliance upon the information, whether or not PMC-Sierra, Inc. has been advised of the possibility of such damage.

© 2000 PMC-Sierra, Inc.

PMC-1990815 (R4) Issue date: December 2000

PMC-SIERRA, INC.

105 - 8555 BAXTER PLACE BURNABY, BC CANADA V5A 4V7 604 .415.6000